
Learning Outcomes for Computational Complexity Theory
1 Definition Specific Goals

1. Define TM.

2. Define configuration of a TM.

3. Define halting and looping.

4. Define TMs in detail for simple algorithms.

5. Describe TMs for complex algorithms.

6. Prove equivalence of various definitions of TMs.

7. Define time complexity.

8. Prove the time hierarchy theorem.

9. Define P.

10. Define NP using verifiers

11. Define NP using non-deterministic TMs.

12. Define coNP using refuters

13. Define coNP using co-non-deterministic TMs.

14. Define ≤m
p .

15. Define ≤p via oracle TMs.

16. Prove NP-completeness using gadgets.

17. Define EXP.

18. Define NEXP.

19. Translate separations using padding arguments.

20. Define space, read-only tape.

21. Prove the space hierarchy theorem.

22. Define PSPACE.

23. Define L.

24. Define NL.

25. Define coNL.

26. Define log-space transducers.

27. Define ≤m
log .

28. Define ≤log .

29. Prove NL = coNL.

30. Define ΣP
i using complete problems.

31. Define ΠP
i using complete problems.

32. Define PH.

33. Define Boolean circuits.

34. Define Boolean circuit size.

35. Define P/poly.

36. Prove Karp-Lipton theorem.

37. Define randomized TMs.

38. Define BPP.

39. Define RP.

40. Define coRP.

41. Define ZPP.

42. Prove that polynomial identity testing is in BPP.

43. Prove that finding perfect matchings is in RP.

44. Prove RP ∩ coRP = ZPP.

45. Prove Adelman’s theorem.

46. Define #P.

47. Prove Toda’s theorem.

48. Define IP.

49. Prove IP = PSPACE.

50. Define Boolean circuit depth.

51. Define NCi for i ≥ 0.

52. Define ACi for i ≥ 0.

53. Prove ACi ⊆ NCi+1 for i ≥ 0.

54. Prove NL ⊆ NC2.

55. Prove NC1 ̸= AC0.

56. Define branching programs.

57. Define non-deterministic branching programs.

58. Prove equivalence of b.p. size and space.

59. Define layered branching programs.

60. Define width of layered b.p.

61. Prove equivalence of b.p. and layered b.p.

62. Prove Barrington’s theorem.

2 Cross-cutting Goals
1. For each definition, identify examples and non-

examples.

2. Prove membership of well-known problems in
classes.

3. Prove well-known containment relationships.

4. Prove well-known closure wrt set operations for
classes.

5. Prove well-known closure for classes wrt reduc-
tions.

6. Choose suitable reductions to define hardness
based on the complexity class C.

7. Identify canonical complete problems for classes.

8. Prove completeness for well-known problems.

1


