
Finding and Counting Patterns in Sparse Graphs

Balagopal Komarath #

IIT Gandhinagar, India

Anant Kumar #

IIT Gandhinagar, India

Suchismita Mishra #

IIT Gandhinagar, India, Universidad Andrés Bello, Chile

Aditi Sethia #

IIT Gandhinagar, India

Abstract

We consider algorithms for finding and counting small, fixed graphs in sparse host graphs. In the
non-sparse setting, the parameters treedepth and treewidth play a crucial role in fast, constant-space
and polynomial-space algorithms respectively. We discover two new parameters that we call matched
treedepth and matched treewidth. We show that finding and counting patterns with low matched
treedepth and low matched treewidth can be done asymptotically faster than the existing algorithms
when the host graphs are sparse for many patterns. As an application to finding and counting fixed-size
patterns, we discover Õ(m3)-time 1, constant-space algorithms for cycles of length at most 11 and
Õ(m2)-time, polynomial-space algorithms for paths of length at most 10.

2012 ACM Subject Classification Theory of computation→ Design and analysis of algorithms; Theory
of computation→ Graph algorithms analysis

Keywords and phrases Subgraph Detection and Counting, Homomorphism Polynomials, Treewidth
and Treedepth, Matchings

1 Introduction

Given simple graphs G, called the pattern, and H, called the host, a fundamental compu-
tational problem is to find or count occurrences of G in H. What does it mean for G to
occur in H? The three most common notions of occurrence are characterized by mappings
ϕ : V(G) 7→ V(H). We say:

1. If {u, v} ∈ E(G) implies {ϕ(u),ϕ(v)} ∈ E(H) and ϕ is one-to-one, then we say that ϕ

witnesses a subgraph isomorphic to G in H. The subgraph is obtained by taking the
vertices and edges in the image of ϕ. The number of G-subgraphs of H is just the number
of such subgraphs G ′ of H.

2. If {u, v} ∈ E(G) is equivalent to {ϕ(u),ϕ(v)} ∈ E(H) and ϕ is one-to-one, then ϕ witnesses
an induced subgraph isomorphic to G in H. The induced subgraph is obtained by taking
the vertices and all edges induced by those vertices in the image of ϕ.

3. If {u, v} ∈ E(G) implies {ϕ(u),ϕ(v)} ∈ E(H), then we say that ϕ is a homomorphism from
G to H. Note that unlike a subgraph isomorphism, ϕ is not required to be one-to-one.

1 Õ hides factors that are logarithmic in the input size.

mailto:bkomarath@rbgo.in
mailto:kumar_anant@iitgn.ac.in
mailto:suchismita.m@iitgn.ac.in
mailto:aditi.sethia@iitgn.ac.in

2 Finding and Counting Patterns in Sparse Graphs

For any of these notions, the detection problem is clearly in NP. All three of them are also
straightforward generalizations of the NP-hard problem CLIQUE. Therefore, the existence of
efficient algorithms for finding or counting patterns under any of these notions is unlikely in
general.

The class of pattern detection and counting problems remain interesting even if we restrict
our attention to fixed pattern graphs. Williams [21] showed that the improved algorithms for
finding triangles could be used to find faster algorithms for even NP-complete problems such
as MAX2SAT. For fixed pattern graphs of size k, the brute-force search algorithm is as follows:
Iterate over all k-tuples over V(H) and check whether G occurs in the induced subgraph
of H on the vertices in that k-tuple. This algorithm takes θ(nk) time and constant space.
Therefore, when we restrict our attention to fixed patterns, we seek improvements over this
running time preferably keeping the space usage low. There are two broad techniques that
reduce the running-time: the usage of fast matrix multiplication algorithms as a sub-routine
and the exploitation of structural properties of pattern graphs.

If A is the adjacency matrix of the graph, then Nešeťril and Poljak [17] showed that one can
obtain an O(nω)-time algorithm for counting triangles using the identity trace(A3) = 6∆,
where ∆ is the number of triangles in the graph, where ω < 2.38 is the matrix multiplication
exponent. Using a simple reduction, they extended this to an algorithm to count 3k-cliques in
O(nkω)-time. They also showed that we can use improved algorithms for counting k-cliques
to count any k-vertex pattern. Later, Kloks, Kratsch and Müller [13] showed how to use fast
rectangular matrix multiplication to obtain similar improvements to the running time for
counting cliques of all sizes, not just multiples of three. Note that the improvements obtained
by these algorithms are applicable to all k-vertex patterns. i.e., they do not use the pattern’s
structure to obtain better algorithms. Since finding a k-clique requires nΩ(k)-time unless
ETH is false, we need to exploit the structure of the pattern to obtain significantly better
algorithms.

For patterns sparser than cliques, the run-time can be significantly improved over even fast
matrix multiplication based (pattern finding) algorithms. The crucial idea is to exploit the
structure of the pattern graph. A k-walk polynomial is a polynomial where the monomials
correspond to walks that are k vertices long. For example, a walk (u, v,w, x) will correspond
to the monomial xuvxvwxwx and a walk (u, v,u, v) to the monomial x3

uv
2. Williams [22]

showed that we can detect k-paths in graphs by (1) computing the k-walk polynomial and (2)
checking whether it has multilinear monomials. We can compute the k-walk polynomial in
linear-time using a simple dynamic programming algorithm and then multilinear monomials
can be detected with high probability by evaluating this polynomial over an appropriate ring
where the randomly chosen elements satisfy a2 = 0. This yields is a O(2k(n + m))-time
algorithm for finding k-vertex paths as subgraphs in n-vertex, m-edge host graphs.

We now consider the problem of counting sparse patterns. For counting k-paths as subgraphs,
the best known algorithm by Curticapean, Dell and Marx [4] takes only O(f(k)n0.174k+o(k))-
time for some function f. Coming to fixed pattern graphs, Alon, Yuster and Zwick [1] gave
O(nω)-time algorithms for counting cycle subgraphs of length at most 8 using an algorithm
that combines fast matrix multiplication and exploitation of the structure of the pattern.
Notice that this is the same as the time required for counting triangles (3-cliques).

2 We write uv to denote the edge {u,v}.

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 3

The notion of graph homomorphisms was shown to play a crucial role in all the above
improved algorithms for finding and counting non-clique subgraphs. More specifically,
Fomin, Lokshtanov, Raman, Rao, and Saurabh [11] showed how the efficient construction
of homomorphism polynomials (see Definition 17), a generalization of k-walk polynomials,
can be used to detect subgraphs with small treewidth efficiently. Their algorithm can be seen
as a generalization of Williams’s algorithm [22] for k-paths to arbitrary graphs. Similarly,
Curticapean, Dell and Marx [4] showed that efficient algorithms for counting subgraphs
can be derived from efficient algorithms for counting homomorphisms of graphs of small
treewidth. Their algorithm can be seen as a generalization of the cycle-counting algorithms
of Alon, Yuster, and Zwick [1].

Algorithms for finding and counting patterns in sparse host graphs are also studied. An
additional parameter, m, the number of edges in the host graph, is taken into account for
the design and analysis of these algorithms. In the worst-case, m could be as high as

(
n
2

)
,

and hence, an O(nt)-time algorithm and an O(mt/2)-time algorithm for some t have the
same asymptotic time complexity. However, it is common in practice that m = o(n2). For
example, if the host graph models a road network, then m = O(n), where the constant
factor is determined by the maximum number of roads at any intersection. In such cases, an
O(mt/2)-time algorithm is asymptotically better than an O(nt)-time algorithm.

The broad themes of using fast matrix multiplication and/or structural parameters of the
pattern to obtain improved algorithms are still applicable in the setting of sparse host graphs.
Using fast matrix multiplication, Eisenbrand and Grandoni [8] showed that we can count
k-cliques in O(mkω/6)-time. Kloks, Kratsch and Müller [13] showed that K4 subgraphs can
be counted in O(m(ω+1)/2)-time. Again, since ω < 3, this is better than the O(m2)-time
given by the brute-force algorithm. Using structural parameters of the pattern, Kowaluk,
Lingas, and Lundell [16] obtained many improved algorithms in the sparse host graph
setting. For example, their methods obtain an algorithm that runs in O(m4)-time for counting
P10 as subgraphs. In this work, we obtain an Õ(m2)-time algorithm for counting P10 (See
Theorems 12,13,14,15 for similar improvements).

The model of computation that we consider is the unit-cost RAM model. In particular, we can
store labels of vertices and edges in the host graph in a constant number of words3. In this
model, algorithms based on fast matrix multiplication and/or treewidth mentioned above
use polynomial space. However, the brute-force search algorithm uses only constant space as
it only needs to store k vertex labels at a time (Recall that we regard k as a constant.). How
much speed-up can we obtain while preserving constant space usage? The graph parameter
treedepth plays a crucial role in answering this question. It is well known that we can count
the homomorphisms from a pattern of treedepth d in O(nd)-time while using only constant
space (See Komarath, Rahul, and Pandey [14] for a construction of arithmetic formulas
counting them. These arithmetic formulas can be implicitly constructed and evaluated in
constant space.). Since all k-vertex patterns except k-clique has treedepth strictly less than k,
this immediately yields an improvement over the running-time of brute-force while preserving
constant space usage. In this work, we improve upon the treedepth-based algorithms for
sparse host graphs where the pattern graph is a cycle of length at most 11 (See Theorem 2).

3 In the TM model or the log-cost RAM model, storing labels of vertices would take O(logn) space.

4 Finding and Counting Patterns in Sparse Graphs

1.1 Connection to arithmetic circuits for graph homomorphism
polynomials

A popular sub-routine in these algorithms is an algorithm by Diaz, Serna and Thilikos [6]
that efficiently counts the number of homomorphisms from a pattern of small treewidth
to an arbitrary host graph. Indeed, it can be shown that this algorithm can be easily
generalized to efficiently construct circuits for homomorphism polynomials instead of counting
homomorphisms. Bläser, Komarath and Sreenivasaiah [2] showed that efficient constructions
for homomorphism polynomials can even be used to detect induced subgraphs in some cases.
They also show that many of the faster induced subgraph detection algorithms, such finding
four-node subgraphs by Williams et al. [23] and five-node subgraphs by Kowaluk, Lingas, and
Lundell [16] can be described as algorithms that efficiently construct these homomorphism
polynomials. Therefore, arithmetic circuits for graph homomorphism polynomials provide a
unifying framework for describing almost all the fast algorithms that we know for finding
and counting subgraphs and finding induced subgraphs. Can we improve these algorithms by
finding more efficient ways to construct arithmetic circuits for homomorphism polynomials?
Unfortunately, it is known that for the type of circuit that is constructed, i.e., circuits that do
not involve cancellations, the existing constructions are the best possible for all pattern graphs,
as shown by Komarath, Pandey, and Rahul [14]. The situation is similar for constant space
algorithms. The best known algorithms can be expressed as divide-and-conquer algorithms
that evaluate small formulas constructed by making use of the graph parameter treedepth.
Komarath, Pandey, and Rahul[14] also showed that the running-time of these algorithms
match the best possible formula size for all pattern graphs. These arithmetic circuit lower
bounds serve as a technical motivation for considering sparse host graphs, in addition to the
practical motivation mentioned earlier.

1.2 Our findings
In this paper, we study algorithms for finding and counting patterns in host graphs that work
well especially when the host is sparse. We discover algorithms that are (1) strictly better
than the brute-force algorithm, (2) strictly better than the best-known algorithms when the
host graph is sparse, (3) close to the best-known algorithms when the host graphs are dense.
Our algorithms are based on two new structural graph parameters – the matched treedepth
and matched treewidth. (See 19 and 21 for formal definitions). We show that they can be
used to obtain improved running times for algorithms that use constant space and polynomial
space respectively. Our algorithms are summarized in Table 1. In the table, the parameter m
is the number of edges in the host graph. We denote using mtw the matched treewidth of the
pattern and using mtd the matched treedepth of the pattern. The notation Õ hides factors
that are poly-logarithmic in the input (the host graph) size.

We now explain the relevance of our new parameters; state our algorithms, the relationships
between various graph parameters, and some structural characterizations that we prove in
this paper in the rest of this section.

1.2.0.1 Treedepth and matched treedepth

The matched treedepth of a graph is closely related to its treedepth. The constant space al-
gorithm based on treedepth is essentially an divide-and-conquer algorithm over a elimination
tree of the pattern graph that executes a brute-force search over each root-to-leaf path in the
elimination tree. Therefore, it runs in time O(nd). We exploit the fact that the elimination

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 5

Pattern Type Problem Time Space Remarks
Ck Subgraph Counting Õ(m3) O(1) k ⩽ 11
Pk Subgraph Counting Õ(m2) Õ(m2) k ⩽ 10
Ck Subgraph Counting Õ(m2) Õ(m2) k ⩽ 9
Any Homomorphism Counting Õ(m⌈mtd/2⌉) O(1)
Any Homomorphism Counting Õ(m⌈(mtw+1)/2⌉) Õ(m⌈(mtw+1)/2⌉)

C6 Induced subgraph Detection Õ(m2) Õ(m2)

Pk Induced subgraph Detection Õ(m⌈(k−2)/2⌉) Õ(m⌈(k−2)/2⌉)

Table 1 Pattern counting and detection algorithms for sparse host graphs.

tree is matched, which forces an additional constraint that the vertices in each root-to-leaf
path has to be covered by a matching. This allows the brute-force part of the algorithm to
discover all d vertices on the path using only d/2 edges. The central algorithm that we use
to obtain constant space algorithms is given below:

▶ Theorem 1. Let G be a graph with mtd(G) = d, then given an m-edge graph H as input, we
can count the number of homomorphisms from G to H in Õ(m⌈d/2⌉)-time and constant space.

It is well-known that the number of G-subgraphs, for any G, can be expressed as a linear
combination of the number of homomorphisms from a related set of graphs called the spasm
of G. The spasm of G contains exactly all graphs that can be obtained by iteratively merging
the independent sets in G. (See 26 for formal definition). Although the treedepth of the
spasm of C11 is bounded by 6, however, the matched treedepth is not necessarily bounded
by the treedepth. We analyze all graphs in the spasm of C10 and C11 (there are 501 such
graphs) and show that the matched treedepth of each graph is at most 6. This yields the
following algorithm:

▶ Theorem 2. Given an m-edge graph H as input, we can count the number of Ck, where
k ⩽ 11, as subgraphs in Õ(m3)-time and constant space.

For comparison, the brute-force algorithm takes O(m6)-time and constant space; and the
treedepth based algorithm takes O(n6)-time and constant space.

As seen from the proof of our algorithm for counting C11, the spasm of a pattern can contain
a large number of graphs even for relatively small patterns. Therefore, it would be nice
to have theorems that upper-bound the matched treedepth. Unfortunately, the property
mtd(G) ⩽ k is not even subgraph-closed unlike treedepth. For example, it can be proved
that mtd(K4 − e) = 3 but mtd(C4) = 4. However, interesting structural observations can still
be made for matched treedepth. The following is a theorem that upper-bounds matched
treedepth in terms of treedepth.

▶ Theorem 3. For any graph G, mtd(G) ⩽ 2 · td(G) − 2.

Theorem 3 implies that our constant-space algorithms from Theorem 1 for counting homo-
morphisms are asymptotically faster for all patterns, where the inputs are sparse host graphs,
when compared to the treedepth-based algorithm.

The following theorem shows that the time complexity for counting homomorphisms of a
pattern is lower-bounded by the time complexity for counting all of its induced subgraphs.

▶ Theorem 4. Let G be a graph and G ′ is a connected, induced subgraph of G, then:

6 Finding and Counting Patterns in Sparse Graphs

1. mtd(G ′) ⩽ mtd(G) if mtd(G) is even.

2. mtd(G ′) ⩽ mtd(G) + 1 if mtd(G) is odd.

In light of the importance of matched treedepth, it becomes crucial that we understand this
structural parameter as much as possible. The graphs of treedepth 2 are exactly the class
of star graphs. This is also the class of graphs with matched treedepth 2. However, for the
graph C4, we have td(C4) = 3 and mtd(C4) = 4. So it is interesting to know what are exactly
the graphs where treedepth and matched treedepth coincide. The following theorem should
be viewed as giving us a preliminary understanding of the relationship between these two
parameters.

▶ Theorem 5. Let G be a graph such that td(G) = 3. Then mtd(G) = 3 if and only if G is
(C4,P6, T3,3)-free.

The graph T3,3 is the (3, 3) tadpole graph (See Figure 2).

1.2.0.2 Treewidth and matched treewidth

The treewidth-based dynamic programming algorithm of Díaz, Serna, and Thilikos [6] can
be strengthened to output an arithmetic circuit that computes the homomorphism polynomial
for the pattern. An arithmetic circuit is a directed acyclic graph where each internal node
is labeled + or ×, each leaf is labeled by a variable or a field constant, and there is a
designated output node. Such a graph computes a polynomial over the underlying field in a
natural fashion. We find that by using a dynamic programming algorithm over matched tree
decompositions, we can improve the size of the arithmetic circuit for sparse host graphs. Our
central theorem is given below:

▶ Theorem 6. Let G be a graph with mtw(G) = t, then given an m-edge host graph H as input,
we can construct an arithmetic circuit computing the homomorphism polynomial from G to H

in time Õ(m⌈(t+1)/2⌉).

For graphs where matched treewidth and treewidth coincide, the running time for counting
homomorphisms is a quadratic improvement on the algorithm by Díaz, Serna, and Thilikos
[6] for sparse graphs. Therefore, this is also the best possible improvement one can hope to
get without improving upon the algorithm by Díaz, Serna and Thilikos [6]. What is the worst
case? The following theorem implies that the resulting algorithm cannot be worse on sparse
host graphs.

▶ Theorem 7. For any graph G, we have mtw(G) ⩽ 2 · tw(G) + 1.

Unfortunately, unlike for treewidth, the parameter mtw(G) is not monotone over the subgraph
partial order. We first observe an explicit graph family with lower tw and larger mtw. Consider
the complete bipartite graph Kn,n on n vertices. Notice that tw(Kn,n) = n.

▶ Proposition 8. mtw(Kn,n) = 2n− 2 for all n > 1.

The following observation shows that there exists supergraphs of Kn,n with lower mtw than
that of Kn,n.

▶ Observation 9. Consider the supergraph G of Kn,n such that V(G) = V(H), and there are
edges in one partition of Kn,n such that the independent set of size n becomes a path on n

vertices. Note that although mtw(Kn,n) = 2n− 2, but mtw(G) = n.

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 7

We show how we can use structural theorems about matched treewidth to prove algorithmic
upper bounds. For example, to count the number of P10 subgraphs, we only have to show that
all graphs in the spasm of P10 have low matched treewidth. The spasm of P10 is a large set
that contains more than 300 graphs. Indeed, it is possible to analyze the matched treewidth
for each of these graphs individually. However, it would be better if we have theorems that
eliminate such tedious work.

We derive some structural theorems for low values of matched treewidth. Graphs with
matched treewidth 1 are exactly trees. We also show tw(C5) = 2 and mtw(C5) = 3.

We characterize the matched treewidth of partial 2-trees using forbidden induced minors
(See Definition 24) wherever possible. We show that C5 is exactly the obstruction that forces
higher matched treewidth for partial 2-trees.

▶ Theorem 10. For any partial 2-tree G, the graph G is C5-induced-minor-free if and only if
mtw(G) = 2.

Notice that tw(G) = 2 yields O(n3)-time algorithms for counting homomorphisms. Even
if mtw(G) = 3, we obtain Õ(m2)-time algorithms for counting homomorphisms which is
an improvement for sparse graphs. Does all treewidth 2 graphs have matched treewidth
at most 3? No. The graph X in Figure 1 has treewidth 2 and matched treewidth 4 (See
Observation 35). In fact, we can prove that X is exactly the obstruction that forces treewidth
2 graphs to have matched treewidth 4.

u0

u1

u2

u3

u4

u5

u ′
1

u ′
3

u ′
5

Figure 1 The graph X.

▶ Theorem 11. For any partial 2-tree G, the graph G is X-induced-minor-free if and only if
mtw(G) ⩽ 3.

This theorem implies that all X-induced-minor-free, treewidth 2 patterns have Õ(m2)-time
homomorphism counting algorithms. This is an improvement for sparse host graph even
over the fast matrix multiplication based algorithm given by Curticapean, Dell, and Marx [9]
for counting homomorphisms from treewidth 2 graphs that runs in O(nω)-time. Since the
spasm of P10 does not contain any treewidth 4 graph or graph with an X-induced minor, we
can show that there is an Õ(m2)-time algorithm for counting subgraph isormophisms of all
paths on at most 10 vertices by showing that all treewidth 3 graphs in the spasm of P10 has
matched treewidth 3. There are only 18 such graphs. Analyzing their matched treewidth
yields the following theorem:

8 Finding and Counting Patterns in Sparse Graphs

▶ Theorem 12. Given an m-edge graph H as input, we can count the number of Pk subgraphs,
where k ⩽ 10, in Õ(m2)-time.

To the best of our knowledge, the best known path counting algorithms take Ω(n4) time for
paths on 10 vertices. Therefore, our algorithm is a significant improvement for sparse host
graphs and no worse than the best known algorithm for dense host graphs. An easy corollary
of the proof of this result is given below:

▶ Theorem 13. Given an m-edge graph H as input, we can count the number of cycles of length
at most 9 in Õ(m2)-time.

These cycle counting algorithms are an improvement on sparse graphs over the O(nω)-time
algorithms for cycles of length at most 8 given by Alon, Yuster and Zwick [1].

We also show how to use our improved homomorphism polynomial construction algorithm
to speed up detection of induced subgraphs. In particular, we show the following:

▶ Theorem 14. Given an m-edge host graph as input, we can find an induced C6 or report that
none exists in Õ(m2)-time.

This algorithm is no worse than the O(n4) time algorithm that can be derived using the
techniques by Bläser, Komarath, and Sreenivasaiah [2]. For sparse graphs, our algorithm
provides a quadratic improvement. We also show the following:

▶ Theorem 15. Given an m-edge host graph as input, we can find an induced Pk or report that
none exists in Õ(m(k−2)/2)-time.

This is also a quadratic improvement over the O(nk−2) time algorithm given by Bläser,
Komarath, and Sreenivasaiah [2] when the host graph is sparse. These algorithms are
obtained by analyzing the matched treewidth and the automorphism structure of a set of
graphs derived from the pattern.

From a technical standpoint, we see our algorithms as a natural combination of pattern detec-
tion and counting algorithms that work well on sparse host graph such as the Õ(m) algorithm
for counting k-walks, the Õ(mk/2) algorithm for counting k-cliques, and Õ(m(k−1)/2) time
algorithm for detecting induced Kk − e by Vassilevska [19] and insights that improve the
running-time on dense graphs by exploiting structural parameters treedepth and treewidth.
We do not make use of fast matrix multiplication in any of our algorithms. Such algorithms,
called combinatorial algorithms, are also of general interest to the community.

1.3 Related work

Algorithms for counting induced subgraphs are related to the problems that we consider
but we do not consider any algorithms for it. This problem seems to be much harder. It
is conjectured by Floderus, Kowaluk, Lingas, Lundell [9] that counting induced subgraphs
for any k-vertex pattern graph is as hard as counting k-cliques for sufficiently large k.
Several works have considered the parameterized complexity of counting subgraphs (See
[5, 4, 18, 10, 7]) where the primary goal is to obtain a dichotomy of easy vs hard based on
structural graph parameters. Some works have also considered restrictions on host graphs
such as d-degeneracy [3]. The papers on parameterized complexity primarily chooses to
focus on the growth-rate of the exponent for a family of patterns such as k-paths, k-cycles, or
k-cliques and not the exact exponent for small graphs as we do in this paper.

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 9

2 Preliminaries

We consider simple graphs. We refer the reader to Douglas West’s textbook [20] for basic
definitions in graph theory. We use the following common notations for some well-known
graphs: Pk for k-vertex paths, Ck for k-cycles, Kk for k-cliques, Kk − e for k-clique with one
edge missing, Km,n for complete bipartite graphs. A k-star is a (k+ 1)-vertex graph with a
vertex u adjacent to vertices v1, . . . , vk and no other edges. A star graph is a k-star for some
k. For a graph G and S ⊆ V(G), we denote by G[S] the subgraph of G induced by the vertices
in S.

▶ Definition 16. Given two graphs G and H, a graph homomorphism from G to H is a map
ϕ : V(G)→ V(H) such that if uv ∈ E(G), then ϕ(u)ϕ(v) ∈ E(H).

We denote by Hom(G, H), the set of all homomorphisms from G to H.

▶ Definition 17. Given two graphs G and H, a homomorphism polynomial is an associated
polynomial HomG[H] such that there is a one-to-one correspondence between its monomials and
the homomorphisms from G to H. We define:

HomG[H] =
∑

ϕ∈Hom(G,H)

∏
u∈V(G)

yϕ(u)

∏
{u,v}∈E(G)

x{ϕ(u),ϕ(v)}

Note that H has a subgraph isomorphic to G if and only if PG has a multilinear monomial.

We say that a graph G ′ is (G1, . . . ,Gm)-free if no induced subgraph of G ′ is isomorphic to
Gi for any i. We denote the complement of a graph G by G. We have V(G) = V(G) and the
edges of G are exactly the non-edges of G and vice versa.

We assume that all pattern graphs are connected. Since our primary algorithms are all based
on counting homomorphisms, this does not lose generality as the number of homomorphisms
from a disconnected pattern is just the product of the number of homomorphisms from its
components.

▶ Definition 18. An elimination tree (T , r) of a connected graph G is a tree rooted at r ∈ V(G),
where the sub-trees of r are recursively elimination trees of the connected components of the
graph G \ r. The elimination tree of an empty (no vertices or edges) graph is the empty tree.
The depth of an elimination tree (T , r) is defined as the maximum number of vertices over all
root-to-leaf paths in T . The treedepth of a graph G, denoted td(G), is the minimum depth
among all possible elimination trees of G.

Intuitively, treedepth measures the closeness of a given graph to star graphs which are exactly
the connected graphs having treedepth 2. We introduce a related notion called matched
treedepth that seems to be helpful when designing algorithms for finding or counting patterns
in sparse host graphs.

▶ Definition 19. A matched elimination tree for a graph G is an elimination tree such that
the following conditions are true for any root-to-leaf path (v1, . . . , vk):

If k is even, then v1v2, v3v4, . . . , vk−1vk is a matching in G.

If k is odd, then there is some i such that E ′ = {v1v2, . . . , vi−1vi, vivi+1, . . . , vk−1vk} and
E ′ ⊆ E(G). We have that E ′ \ {vi−1vi, vivi+1} is a matching on (k− 3)/2 vertices.

The matched treedepth of a graph G, denoted mtd(G), is the minimum depth among all possible
matched elimination trees of G.

10 Finding and Counting Patterns in Sparse Graphs

The matched treedepth is always finite (See Proposition 25).

▶ Definition 20. A tree decomposition of a graph G is a pair (T ,B(t)t∈T) where T is a tree
and B(t), called a bag, is a collection of subset of vertices of G corresponding to every node t ∈ T .

(Connectivity Property) For all v ∈ V(G), there is a node t ∈ V(T) such that v ∈ B(t) and
all such nodes t that contain v form a connected component in T .

(Edge Property) For all e ∈ E(G), there is a node t ∈ V(T) such that e ⊆ B(t).

The width of a tree decompostion (T ,B) is defined as the maximum bag size minus one, that is,
maxt∈T |B(t) − 1|. The treewidth of a graph G, tw(G), is the minimum possible width among
all possible tree decompositions of G.

Intuitively, treewidth measures the closeness of the given graph to trees which are exactly the
graphs with treewidth 1. We introduce a related notion, called matched treewidth, closely
related to treewidth, that seems to be useful for designing dynamic programming algorithms
over sparse host graphs.

▶ Definition 21. A matched tree decomposition for a graph G is a tree decomposition where
for every bag in the tree decomposition, the subgraph of G induced by the vertices in that bag
has either a perfect matching or a matching where exactly one vertex v in the bag is unmatched
and v is adjacent to some vertex in the matching. We call such bags matched. The matched
treewidth of a graph G, mtw(G), is the minimum possible width among all possible matched
tree decompositions of G.

Matched treewidth is finite for all graphs (See Proposition 31). This is not trivial unlike
treewidth because a single bag tree decomposition that contains all the vertices in the graph
need not be matched.

We call a tree decomposition reduced if no bag B is a subset of another bag. Given any tree
decomposition T , we can obtain a reduced tree decomposition T ′ such that the width of T ′ is
at most the width of T . Moreover, all bags in T ′ are also bags in T . This implies that if T is
matched, then T ′ is matched as well.

There are several equivalent characterizations for treewidth. Below, we state the ones that
we use in this paper.

▶ Definition 22. A k-tree is a graph formed by starting with a (k+ 1)-clique and repeatedly
adding a vertex connected to exactly k vertices of the existing (k+ 1)-clique. A partial of a graph
G is a graph obtained by deleting edges from G. The set of all graphs with treewidth at most k is
exactly the class of partial k-trees.

We can construct a standard tree decomposition T for any k-tree as follows: The root bag of
T contains the vertices in the initial (k + 1)-clique. Let S be a k-sized subset of this clique
such that a new vertex v is added to the k-tree by connecting it to all vertices in S. Then, we
add a sub-tree to T that will be a standard tree decomposition of the k-tree constructed using
S ∪ {v} as the starting (k+ 1)-clique.

A chordal completion of a graph G is a super-graph G ′ of G such that G ′ has no induced
cycles of length more than 3. A chordal completion that minimizes the size of the largest
clique is called minimum chordal completion. The treewidth of a graph G is the size of the
largest clique in its minimum chordal completion.

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 11

Two paths P1 and P2 from u to v are internally disjoint if and only if P1 and P2 do not have
any common internal vertex.

A graph G is 2-connected or biconnected, if for any x ∈ V(G), G− x is connected. Equivalently,
for any two vertices in G, there are at least 2 internally disjoint paths in G.

▶ Definition 23. A series-parallel graph is a triple (G, s, t) where s and t are vertices in G. This
class is recursively defined as follows:

An edge {s, t} is a series-parallel graph.

(series composition) If (G1, s1, t1) and (G2, s2, t2) are series-parallel graphs, then the graph
obtained by identifiying s2 with t1 is also series-parallel.

(parallel composition) If (G1, s1, t1) and (G2, s2, t2) are series-parallel graphs, then the
graph obtained by identifiying s1 with s2 and t1 with t2 is also series-parallel.

A graph has treewidth at most 2 is if and only if all of its biconnected components are series-
parallel graphs.

▶ Definition 24. A graph G is said to be a minor of a graph G′ if G can be obtained from
G′ either by deleting edges/vertices, or by contracting the edges. (The operation of contraction
merges two adjacent vertices u and v in the graph and removes the edge (u, v).) If G is obtained
from an induced subgraph of G′ by contracting the edges, then it is said to be an induced minor
of G′.

A graph G is called G ′-induced-minor-free (G ′-minor-free) if G ′ is not an induced minor
(resp. minor) of G.

An edge subdivision is an operation which deletes the edge (u, v) and adds a new vertex
w and the edges (u,w) and (w, v). A graph G′ obtained from G by a sequence of edge
subdivisions is said to be a subdivision of G.

2.1 Representation of graphs
We assume the following time complexities for basic graph operations. Any representation
that satisfies these is sufficient.

Given u and v, it can be checked in Õ(1)-time whether uv is an edge.

Iterating over all the edges xy ∈ E(H) ordered by x can be done in Õ(m)-time, where m

is the number of edges in H.

These requirements are satisfied by the following adjacency-list representation. To represent
a graph H, we store a red-black tree T that contains non-isolated vertices of H where vertices
are ordered according to their labels. Consider a node in this tree that corresponds to a vertex
u. This node stores another red-black tree Tu that stores all neighbors of u in H. Now, to
check whether uv is an edge or not, we perform a lookup for u in T followed by a lookup
for v in Tu if u was found. We can iterate over all edges xy ordered by x by performing an
inorder traversal of T where for each node u, we perform an inorder traversal of Tu.

If the pattern does not contain any isolated vertices, then we can ignore isolated vertices in
the host graph as well. If the pattern is G = G ′ + v, where v is an isolated vertex and G ′ is
any graph, then the number of homomorphisms from G to H is obtained by multiplying the

12 Finding and Counting Patterns in Sparse Graphs

number of homomorphisms from G ′ to H by n, where n is the number of vertices in H. This
can be calculated by simply storing the number of vertices of H in the data structure.

3 Matched treedepth

In this section, we introduce algorithms that count homomorphisms and subgraphs efficiently
in constant space on sparse host graphs. The central theorem in this section is given below.

▶ Theorem 1. Let G be a graph with mtd(G) = d, then given an m-edge graph H as input, we
can count the number of homomorphisms from G to H in Õ(m⌈d/2⌉)-time and constant space.

Proof. The algorithm is given in Algorithm 1. We can compute the result needed by calling
COUNT-HOM-MTD(G,E, r,H,ϕ), where E is an elimination tree for G of depth d, r is the
root vertex in E, and ϕ is the empty homomorphism. For simplicity of presentation, we
assume that each root-to-leaf path in E has an even number of vertices. Odd number of
vertices in a root-to-leaf path is handled similarly.

We assume that the host graph H is represented using a symmetric adjacency list represent-
ation. This is mainly to ensure that we can iterate over all edges xy in H ordered by x in
Line 3.

First, we prove that the algorithm is correct. We claim that the call COUNT-HOM-MTD
(G,E, v,H,σ) where the parameters are as specified in the algorithm returns the number of
homomorphisms from Gv to H that extends σ. This is proved by an induction on the height
of v in E. Since v is a top node, the base case is when the height is 2. In this case, Gv is a
star graph and it is easy to see that the algorithm works. We now prove the inductive case.
The variable t computes the final answer. Denote by su,x for vertex x in H the number of
homomorphisms from Gu to H that extends τ = σ ∪ {v 7→ x}. Notice that since uv ∈ E(G), to
extend τ, the vertex u must be mapped to some y such that xy ∈ E(H). Therefore, iterating
over all such y is sufficient. Notice that we can compute t as

∑
τ

∏
u su,x. However, this

would need storing |V(G)||V(H)| variables. By iterating over the edges of H ordered by x, we
can afford to reuse a single su for different x instead of keeping a separate su,x for each x.
Now, we show that su correctly computes su,x once the main loop finishes with an x. By the
inductive hypothesis, the variable cw is the number of homomorphisms from Gw to H that
extends σ ′ = σ ∪ {v 7→ x,u 7→ y}. Therefore, we have su,x =

∑
y

∏
w cw. Line 12 correctly

computes this into su. Line 15 correctly updates t once an x is finished. Finally, we reset su
to 0 before processing the next x.

Now, we prove the running-time and space usage of the algorithm. Notice that the depth of
the recursion is bounded by the depth of the elimination tree E and each level of recursion
stores only constantly many variables. Therefore, the space usage is constant. The main
loop in Line 3 runs for 2m iterations. The inner-loops only have a constant number of
iterations. Therefore, the recursive calls are made only O(m) times. We process two
levels of the elimination tree in a level. Therefore, the total running-time is given by
t(d) ⩽ O(m)t(d− 2) + Õ(1) = Õ(md/2).

◀

A fundamental question regarding matched treedepth is whether it is finite for all graphs. It
is, as the following proposition shows.

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 13

Algorithm 1 COUNT-HOM-MTD(G, E, v, H, σ)

Require: G - The pattern graph
Require: E - Matched elimination tree for G
Require: v - A top vertex in E

Require: H - The host graph
Require: σ - A partial homomorphism from the ancestors of v to H

t← 0
su ← 0 for all children u of v
for all edges xy ∈ E(H) ordered by x do

for all children u of v in E do
σ ′ ← σ ∪ {v 7→ x,u 7→ y}

if σ ′ is an invalid homomorphism then
continue

end if
for all children w of u do

cw ← COUNT-HOM-MTD(G,E,w,H,σ ′)

end for
su ← su +

∏
w cw

end for
if xy is the last edge on x then

t← t+
∏

u su
su ← 0 for all u

end if
end for
return t

14 Finding and Counting Patterns in Sparse Graphs

▶ Proposition 25. For any graph G, we have mtd(G) is at most 1 + the number of vertices in
the smallest maximal matching in G.

Proof. We partition V(G) into a maximal matching M = (v1w1, . . . , vmwm) and an inde-
pendent set {u1, . . . ,uk}. A matched elimination tree T for G can be constructed as follows:
Put the vertices v1,w1, . . . , vm,wm on a root-to-leaf path in that order. Let us call this path
the spine. For each vertex ui, make the lowest vertex in the spine adjacent to ui in G its
parent in T . It is easy to see that T is a matched elimination tree and its depth is at most 1 +
the number of vertices in M. ◀

Although, Proposition 25 proves an upper-bound for matched treedepth. It is not very useful
from an algorithmic perspective as it is easy to see that there is an O(mk+1)-time, constant
space algorithm for counting patterns with maximal matchings of k edges. Any smallest
maximal matching in C11, for example, has 4 edges. However, the proof of Theorem 2 given
below shows that we can do better. The algorithm is based on the well-known technique of
expressing subgraph count as a linear combination of homomorphism counts.

▶ Definition 26. Let I be the set of all the independent sets in the graph G. For some
I ∈ I, Merge(G, I) is the graph obtained by merging the vertices of I. Then

Spasm(G) = {G} ∪
⋃
I∈I

Spasm(Merge(G, I))

For any pattern graph G, it turns out that the number of subgraph isomorphisms from G to
a host graph H are just the linear combination of all possible graph homomorphisms from
SpasmG to H. That is, there exists constants αG′ ∈ Q such that:

SubG[H] =
∑
G′

αG′HomG′ [H] (1)

where G ′ ranges over all graphs in Spasm(G). This equation is used to count subgraphs by
many authors (See for example [1, 4]).

▶ Theorem 2. Given an m-edge graph H as input, we can count the number of Ck, where
k ⩽ 11, as subgraphs in Õ(m3)-time and constant space.

Proof. We analyzed all graphs in Spasm(C11) and Spasm(C10) and concluded that each
of them has matched treedepth at most 6. A pdf that contains all these graphs and
their corresponding matched elimination trees can be found at (https://github.com/
anonymous1203/Spasm). For seeing that the stated algorithms exist for smaller cycles, ob-
serve that Spasm(Ck) ⊂ Spasm(Ck+2) for k ⩾ 3. ◀

The class of treedepth 2 graphs is exactly the star graphs. These graphs have an O(n2)-time,
constant space, treedepth-based algorithm. This class of graphs is also the graphs of matched
treedepth 2. It is easy to see that the number of homomorphisms from star graphs can also be
counted in O(m)-time and constant space using the following observation. Let d1, . . . ,dn be
the degrees of vertices in the graph. Then, the count is given by the expression

∑
i d

k
i . Note

that this is an asymptotic improvement for sparse graphs. We now show that this asymptotic
improvements exists for all patterns. First, we need a restricted form of elimination trees.

▶ Definition 27. An elimination tree T is connected if for every node u in T and a child v of u
in T , u is adjacent to some node in Tv

https://github.com/anonymous1203/Spasm
https://github.com/anonymous1203/Spasm

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 15

Now, we show that connected elimination trees are optimal.

▶ Lemma 28. Every connected graph G has a connected elimination tree of depth td(G).

Proof. We show how to construct a connected elimination tree T ′ from an elimination tree T

without increasing its depth. Let T ′ = T initially. Suppose there exists some node u in T ′ that
violates the property (If not, we are done). Then, there exists a child v of u in T ′ such that
there is no edge in G between u and any node in T ′

v. Let w be a node in T ′
v such that w is

adjacent to some proper ancestor x of u. Such a w must exist because G is connected. Now,
in T ′, remove the subtree T ′

v and make it a subtree of the node x. Repeat this process until
all nodes in T ′ satisfy the required property. This process must terminate since at each step,
we reduce the number of nodes violating the property by at least one. This process cannot
increase the depth of T ′ because the only modification is to move a subtree upwards to be a
subtree of a proper ancestor of its parent. ◀

▶ Theorem 3. For any graph G, mtd(G) ⩽ 2 · td(G) − 2.

Proof. We start with a connected elimination tree T with depth d of G and show how to
construct a matched elimination tree of G from T . We use induction on d. For d = 2, the tree
is already matched and has depth 2 = 2 · 2 − 2.

Our construction is iterative and top-down. Each iteration ensures that the current top-most
node in the elimination tree is adjacent, in the graph G, to all its children and that the
elimination tree is connected.

Each iteration consists of two phases iteratively executed until the desired property is satisfied.
The first phase ensures that the root node r is adjacent in G to all its children in T . If r has
a child v that is not adjacent in G to r, then since T is connected, there is some node w in
Tv such that rw ∈ E(G). Then, we make w a child of r in T , delete w from Tv, and make all
children of w children of parent of w. The resulting tree is an elimination tree of depth at
most d+ 1. After this phase, the root node is adjacent in G to all its children, the tree’s depth
has increased by at most one. However, it may not be connected.

In the second phase, we use the construction of Lemma 28 to make the tree connected
without increasing the depth. Observe that the construction will keep the existing children of
root as is and may add new chlidren to r that are not adjacent to r in G. Suppose a new node
u was added as a new child to r in this second phase. The height of subtree rooted at u is
at most d− 1. Therefore, the tree (r, Tu) obtained by attaching u to r has height at most d.
We can now execute phase 1 on all the trees (r, Tu) for all such u without increasing depth
beyond d+ 1. This process must eventually terminate as we add at least one new child to
the root every time.

At the end of the iteration, consider a grandchild x of r. If it is a leaf, since the tree is
connected, x must be adjacent in G to its parent in T and we are done. Otherwise, the subtree
Tx is a tree of depth at least 2 and at most d − 1 that is connected. So by the induction
hypothesis, we obtain that Tx is a matched elimination tree of depth at most 2(d − 1) − 2.
This means that the original tree is converted to a matched elimination tree of depth at most
2 + 2(d− 1) − 2 = 2d− 2 as required. ◀

▶ Corollary 29. Suppose G has treedepth d. Given an m-edge host graph as input, we can count
the number of homomorphisms from G to the host graph in Õ(md−1)-time and constant space.

16 Finding and Counting Patterns in Sparse Graphs

Notice that that above algorithm is asymptotically better than the treedepth based algorithm
for all patterns on sparse host graphs.

We now prove that the matched treedepth of an induced subgraph cannot be much larger
compared to that of the graph containing it. In other words, we can obtain lower bounds on
the matched treedepth of a graph by obtaining lower bounds on the matched treedepth of
any of its induced subgraphs. We prove the theorem for connected subgraphs. But note that
the matched treedepth of a disconnected graph is the maximum of its connected components.

▶ Theorem 4. Let G be a graph and G ′ is a connected, induced subgraph of G, then:

1. mtd(G ′) ⩽ mtd(G) if mtd(G) is even.

2. mtd(G ′) ⩽ mtd(G) + 1 if mtd(G) is odd.

Proof. We start with a matched elimination tree T of even (The odd case is similar) depth
d for G and construct a matched elimination tree for G ′. First, we delete all nodes in the
elimination tree that are in G but not in G ′. If a node u in T has parent v that was deleted,
then we make u a child of the closest ancestor of v that is still in T . The final forest thus
obtained is a tree T ′ because G ′ is connected. We assume without loss of generality that T ′ is
a connected elimination tree.

Suppose r ′ is the root of T ′. We will now modify T ′ into a matched elimination tree. We will
first analyze paths in T ′ that correspond to even length root-to-leaf paths in T . If T ′ is not
matched on this path, then there exists a node u closest to r ′ such that u is not connected in
G ′ to a child v in T ′. This is only possible if u was either matched to a child w of u in T or
its parent w in T and w is not in G ′. Therefore, we have distT ′(r ′,u) + depth(T ′

v) < depth(T)
and this means we can afford to increase the length of any path that passes through edge uv

by 1. Since T ′ is connected, we can now apply the transformation in the proof of Theorem 3
to match u with one of its descendants in T ′

v. The depth is still at most d because this
transformation increases the depth by at most 1 In effect, the increase in depth in this branch
of the tree by pulling up a descendant is compensated by the fact that the unmatched vertex
was introduced by deleting a vertex in this branch.

We can iteratively apply the above construction to make T ′ a matched elimination tree while
keeping T ′ connected. However, applying the above transformation may introduce a node u

in T ′ that is not matched to a child v because v’s parent w was pulled up in the tree to match
with some other vertex. Such u also satisfy the inequality distT ′(r ′,u)+depth(T ′

v) < depth(T).
Why? Any path in the tree T ′ that passed through both u and v earlier had to pass through
w. But, the fact that w was pulled up implies that these paths had length strictly less than
depth(T) by the argument in the previous paragraph. And shifting w to a position earlier in
the path cannot increase its length.

For root-to-leaf paths in T of odd length, there might be a matched P3 on vertices uvw such
that v is not in G ′. In this case too, by the same argument, the transformations increase the
depth to at most d+1 (In this case, we may have to pull up two distinct vertices for matching
u and w.). When d is even, increasing the length of such paths by 1 does not increase the
depth of the tree. When d is odd, increasing the length of such paths by 1 increases the depth
by atmost 1. ◀

Theorem 3 implies that all graphs G with td(G) = 3 also have mtd(G) ⩽ 4. It is easy to see
that C4, P6, and T3,3 given in Figure 2 have td(.) = 3 and mtd(.) = 4. By Theorem 4, it is

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 17

C4 P6 T3,3

Figure 2 Forbidden graphs for mtd(.) ⩽ 3

also possible that some super graph of these graphs have mtd(.) = 3. However, in the below
theorem we show that this cannot happen and that the graphs G with td(G) = mtd(G) = 3
are exactly the graphs where we forbid these graphs as induced subgraphs.

▶ Theorem 5. Let G be a graph such that td(G) = 3. Then mtd(G) = 3 if and only if G is
(C4,P6, T3,3)-free.

Proof. (Proof for the “if” direction) Let G be a connected graph with td(G) = 3 such that G
is (C4,P6, T3,3)-free. We will construct a matched elimination tree for G of depth 3 from its
elimination tree.

Consider an elimination tree T of G with depth 3, rooted at some vertex r. Let {v1, v2, . . . vk}
be the children of r in T . Notice that for any child c of vi (for any i), if c is not adjacent to vi
in G then it must be adjacent to r in G (else, G is not connected). We make all such c, which
are not adjacent to vi in G, a child of r instead of vi, in the elimination tree T . Note that this
neither violates any property of elimination tree nor does it increase the depth of elimination
tree. Also, after doing this modification, we can further assume that all the children of vi in
T are adjacent to vi in G.

Now, if rvi ∈ E(G) for all i ∈ [k], then T itself is a matched elimination tree and we are done.
Suppose there exists an i such that rvi /∈ E(G). Since G is connected, a path must exists from
r to vi. Since T has depth 3, this path must be a P3 and therefore r and vi has at least one
common neighbor. Any common neighbour u of r and vi must be a child of vi in T . Moreover,
if r and vi have two common neighbors, say u1 and u2, then ru1vu2r is an induced C4. So r

and vi must have exactly one common neighbor. We now consider the following cases:

r has exactly one child v1.

Let c1, c2, . . . , ck be the children of v1. Recall that rv1 /∈ E(G), and they have exactly one
common neighbor in G, say c1. Then, we construct a matched elimination tree T ′ as
follows: The root of T ′ is c1, vertices r and v1 become the children of c1, the children of
v1 in T ′ are {c2, . . . , ck} The tree T ′ is a valid matched elimination tree of depth 3 for G.

r has multiple children, say {v1, . . . vℓ} for some ℓ > 1.

We split this into two cases.

(r is not adjacent to exactly one of its children, say v1)

The vertex v1 is not a leaf in T since G is connected. If v1 has exactly one child,
then, since it must be a common neighbor c of r and v1, we swap c and v1, and this
does not increase the depth of T . Else, suppose v1 has at least two children, namely
{c1, c2, . . . ck} (where the common neighbor with r is c1). We now argue that all the
other children {v2, . . . vl} of r must be leaves in T . If not, then say v2 has a child c3,
then we encounter an induced P6, namely (c2, v1, c1, r, v2, c3) (if rc3 ̸∈ E(G)) or an

18 Finding and Counting Patterns in Sparse Graphs

induced T3,3 (if rc3 ∈ E(G)), which is a contradiction. So, {v2, . . . vl} are leaf vertices.
Now, we can convert T to T ′ by rooting it at c1 instead of r. The children of c1 in T ′

are precisely r and v1, the children of r are precisely all the leaves {v2, . . . vl}, and the
children of v1 are all the same except c1, that is, {c2, . . . ck}. It is easy to see that T ′ is a
matched elimination tree of depth 3.

(r is not adjacent to at least two of its children, say v1 and v2 and maybe more)

Due to the connectivity of G, the vertices v1, v2 cannot be leaves in T . If v1 has exactly
one child c, then c must be a common neighbor of r and v1. We swap v1 and c in T .
This will either fall into the previous case or we can assume v1 has more than one child.
Let c1, c2 be two children of v1, where c1 is the common neighbor of r and v1. Then
we get an induced P6, namely, (c2, v1, c1, r, c, v2), where c is a common neighbor of r
and v2. (Such a c must exist as (r, v2 /∈ E(G)).

(Proof for the “only if” direction) Suppose G is a connected graph with td(G) = 3 such that
mtd(G) = 3. We will show that G cannot contain C4, P6, or T3,3 as induced subgraphs. We
will prove that any connected induced subgraph G ′ of G has matched treedepth at most 3.

Let T be the matched elimination tree of G of depth 3. Let r be the root of T . If r is not in G ′,
then since G ′ is connected, all vertices in G ′ must come from a single sub-tree of r in T . In
that case, that sub-tree witnesses a matched elimination tree of depth at most 2 for G ′. If r is
in G ′, then G ′ may be obtained by deleting some level 1 and level 2 vertices in T . We will
construct a matched elimination tree for G ′ from T . If a level 2 vertex is not in G ′, we simply
delete it from T as well. If a level 1 vertex v is not in G ′, then for each u ∈ V(G ′) that is also
a child of v in T , there must be an edge ru in G ′ since G ′ is connected. Therefore, we make
u a child of r in the matched elimination tree for G ′. ◀

By Theorem 1 and Theorem 3, we can conclude that every pattern G with td(G) = 3 has
an Õ(m2) algorithm for counting homomorphisms from G to m-edge sparse host graphs.
Therefore, the presence of C4, P6, or T3,3 as induced subgraphs in G does not affect the
running-time of Algorithm 1. If we consider patterns G with td(G) = 4, then we have
examples such as P8 where td(P8) = 4 and mtd(P8) = 5. Therefore, we can obtain only an
Õ(m3) algorithm for counting homomorphisms from P8. It would be interesting to prove
theorems similar to Theorem 5 for higher treedepth, say 4. But, we do not even know the
exact set of forbidden induced subgraphs for treedepth 4 [12] so this seems difficult.

4 Matched treewidth

In this section, we introduce algorithms that count homomorphisms and subgraphs efficiently
on sparse host graphs by using polynomial space. The central theorem in this section is given
below.

▶ Theorem 6. Let G be a graph with mtw(G) = t, then given an m-edge host graph H as input,
we can construct an arithmetic circuit computing the homomorphism polynomial from G to H

in time Õ(m⌈(t+1)/2⌉).

Proof. Let T be a matched tree decomposition of G. We fix an arbitrary assignment of edges
and vertices of G to bags of T such that each vertex and edge is assigned to exactly one bag
that contains it. Let B be a bag in T . We consider the matched matching M in B as a sequence

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 19

of edges (a1b1, . . . , akbk) by arbitrarily ordering them. Given edges u1v1, . . . ,ukvk in the
host graph H such that σ(ai) = ui and σ(bi) = vi is a valid partial homomorphism on the
vertices of B, we define the following monomials:

EdgeMon(B,u1v1, . . . ,ukvk) =
∏
e

xσ(e)

VertexMon(B,u1v1, . . . ,ukvk) =
∏
v

yσ(v)

where e and v range over all edges and vertices assigned to B. We also define Mon(B,u1v1, . . . ,
ukvk) as the product of EdgeMon(B,u1v1, . . . ,ukvk) and VertexMon(B,u1v1, . . . ,ukvk).

Let B and B ′ be bags in T such that B ′ is the parent of B. We arbitrarily order the vertices
to obtain a sequence X(B ∩ B ′) of the vertices in B ∩ B ′ (We may assume that the vertices
are labeled from [|V(G)|] and choose increasing order). We define MapGate(B,B ′, u1, . . . ,
uk) where X(B ∩ B ′) = (a1, . . . ,ak) as the named gate which corresponds to the partial
homomorphism σ(ai) = ui, 1 ⩽ i ⩽ k.

Algorithm 2 constructs the required circuit. Notice that all operations within the loops in
Line 9, 20, 36 runs in O(logn) time. The loops itself executes for O(m⌈(t+1)/2⌉) iterations
since any matched matching on t+ 1 vertices contains at most ⌈(t+ 1)/2⌉ edges. The loops
in Line 2, 7, and 18, executes for O(1) iterations since the pattern graph G is fixed. Notice
that we iterate over pairs uv that correspond to edges instead of edges {u, v} because the
order determines the homomorphism.

When a hash table lookup for a MapGate(.) gate fails. We add it to that table with an
initial value if the gate occurred on the left-hand side and replace it with 0 if it occurs on
the right-hand side. We now prove the correctness of the circuit using parse trees. Notice
that the only + gates in the circuit are MapGate(. . .). For this proof, we can think of r as
MapGate(R,ϕ) where R is the root bag in T with an empty bag as parent. Therefore, the
monomials of the final polynomial correspond to the choices at these gates while building the
parse tree. For some bag B with parent B ′ in T and vertices x1, . . . , xk in G, the inputs to the
gate MapGate(B,B ′, x1, . . . , xk) correspond to valid partial homomorphisms on the vertices
of B that map ai to xi for all ai ∈ X(B ∩ B ′). We identify these gates with the bag B. Now,
given a homomorphism σ from G to H, we build its parse tree by choosing for each such
gate, the restriction of σ to the vertices in that bag. We have to prove that this choice will
be consistent with the images x1, . . . , xk at each gate. Indeed, this is vacuously true at the
root gate (the list is empty). For an arbitrary a ∈ V(G), consider the topmost bag B where a

first appears. In the partial homomorphism chosen at B, we can freely fix the image of the
vertex a to that of in σ. By construction, this choice is then propagated when moving to its
child gates corresponding to bags where a is present (See Lines 15, 30, and Lines 42). Also,
if a child bag of B does not contain the vertex a, then the vertex a will not appear in that
subtree too. It is easy to see that this parse tree computes the correct monomial. Since the
circuit is monotone, this proves that all monomials that correspond to homomorphisms are
present in the polynomial. For the other direction, we have to argue that only monomials
that correspond to homomorphisms are present in the polynomial. Indeed, any parse tree
corresponds to a sequence of choices of partial homomorphisms at each gate. We argue
that these partial homomorphisms must be consistent with each other and therefore can
be combined into a valid homomorphism. This is because T is a tree decomposition and
therefore any a ∈ V(G) must occur in a (connected) subtree of T . The construction of the
circuit ensures that once the image of vertex a is determined in a parse tree, it is correctly

20 Finding and Counting Patterns in Sparse Graphs

propagated to all partial homomorphisms where a is a member of the domain. Furthermore,
since each vertex and edge in G are assigned to a unique bag, their images appear exactly
once in the monomial. This completes the proof.

◀

▶ Remark 30. An anonymous reviewer on an earlier draft of this paper commented that the
graph parameter generalized hypertree width, denoted ghw, may yield similar running-times.
Indeed, we have verified that Õ(mghw)-time algorithms exist and that ghw ⩽ ⌈(mtw + 1)/2⌉
and the running-times coincide in the worst-case. To the best of our knowledge, the parameter
ghw has not been analyzed in the context of fast algorithms for small patterns. It is primarily
used for designing efficient algorithms on hypergraphs with high treewidth and low ghw. We
believe analyzing mtw is also useful since it is sometimes more fine-grained than ghw. i.e.,
the class ghw = k may contain graphs from both classes mtw = 2k− 2 and mtw = 2k− 1.

First, we make some fundamental observations about mtw.

We can relate it to matched treedepth as we relate treewidth to treedepth.

▶ Proposition 31. For any graph G, we have mtw(G) ⩽ mtd(G) + 1.

Proof. Let E be the optimal matched elimination tree for G. We construct a matched tree
decomposition T for G from E as follows: For each path from root to leaf in E from the
leftmost path to the rightmost path, construct bags that contain all vertices in those paths.
Then, join those bags into a path by adding an edge between bags B (corresponds to path to
leaf u) and B ′ (corresponds to the path to leaf v) if and only if v is the next leaf in E from u

when leaves are ordered from left to right. ◀

Now, we prove that matched treewidth cannot be much higher than treewidth.

▶ Theorem 7. For any graph G, we have mtw(G) ⩽ 2 · tw(G) + 1.

Proof. Let T be a tree decomposition of G of width k. We will describe a procedure to
convert T to a matched tree decomposition. The construction is top-down. The final tree will
have the property the vertices in each non-leaf bag will induce a perfect matching in G.

Let Br be the root bag in T . The following procedure will be applied to Br.

1. Find maximal matching M in Br.

2. For each v ∈ Br \M such that NG(v) ⊆ Br. Observe that since M is a maximal matching
NG(v) ⊆ V(M) as well. We delete v from Br and add a leaf bag Bv as a child of Br. The
bag Bv will contain v and the vertices in M. Since v is adjacent to at least one vertex in
M, this bag is matched.

3. For each v ∈ Br \ M such that NG(v) ⊈ Br. We can find a u such that u /∈ Br and
u ∈ NG(v). We choose such a u that is in a bag B that is at a minimal distance from Br

in T . We add u to Br and all the bags in the path from B to Br in T . We then modify
M = M ∪ {uv}.

Notice that each iteration in step 2 and step 3 reduces the unmatched vertices in Br by 1 and
only adds leaf bags to T that are matched. In addition, if Br originally had x vertices, after
this procedure it will have at most 2x vertices as we add at most one vertex corresponding to

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 21

Algorithm 2 Computing HomG[H]

1: Let T be a near-perfect tree decomposition of G.
2: for each bag B in T do
3: for each child B ′ of B in T do
4: Initialize empty hash table T(B,B′).
5: end for
6: end for
7: for each non-root leaf bag B in T do
8: Let B ′ be the parent of B in T .
9: for (u1v1, . . . ,ukvk) ∈ E(H)k do

10: Let σ be σ(ai) = ui, σ(bi) = vi.
11: if σ is not a valid partial homomorphism from G to H then
12: Skip this iteration
13: end if
14: Let x1, . . . , xk′ be the images of vertices in X(B ∩ B ′) in σ.
15: MapGate(B,B ′, x1, . . . , xk′)+=Mon(B,u1v1, . . . ,ukvk)

16: end for
17: end for
18: for each non-root bag B in T in a bottom-up order do
19: Let M = (a1b1, . . . ,akbk).
20: for (u1v1, . . . ,ukvk) ∈ E(H)k do
21: Let σ be σ(ai) = ui, σ(bi) = vi.
22: if σ is not a valid partial homomorphism from G to H then
23: Skip this iteration
24: end if
25: Let B ′ be the parent of B in T .
26: Let B1, . . . ,Bs be the children of B in T .
27: Let x1, . . . , xk′ be the images of vertices in X(B ∩ B ′) in σ.
28: Let wi1, . . . ,wiki

be the images of vertices in X(B ∩ Bi) in σ.
29: MapGate(B,B ′, x1, . . . , xk′)+=

30: Mon(B,u1v1, . . . ,ukvk)
∏s

i=1 MapGate(B,Bi,wi1, . . . ,wiki
)

31: end for
32: end for
33: Let B be the root in T

34: Let B1, . . . ,Bs be the children of B in T .
35: r← 0
36: for (u1v1, . . . ,ukvk) ∈ E(H)k do
37: Let σ be σ(ai) = ui, σ(bi) = vi.
38: if σ is not a valid partial homomorphism from G to H then
39: Skip this iteration
40: end if
41: Let wi1, . . . ,wiki

be the images of vertices in X(B ∩ Bi) in σ.
42: r+=Mon(B,u1v1, . . . ,ukvk)

∏s
i=1 MapGate(Bi,B,wi1, . . . ,wiki

)

43: end for
44: return r

22 Finding and Counting Patterns in Sparse Graphs

each of the original x vertices. Therefore, the size of modified Br is at most 2k+ 2 and the
graph induced by vertices in Br has a perfect matching.

Now, consider an arbitrary bag B such that all its ancestors are bags with a perfect matching.
Let Bp be the parent of B in T and let M be the perfect matching on the vertices in Bp. We
now apply the following procedure on B.

1. For each v ∈ B ∩ Bp, let u be the partner of v in M. If u is in B, then we match v to u

in B as well. If not, then we add u to B and match v to u in B. This does not violate
any properties of tree decompositions. Notice that if v was added to B in step 3 of the
procedure for the root bag, then its partner u must be in B as well.

2. For v ∈ B \ Bp, we apply steps 2 and 3 in the procedure described for the root bag. These
steps only modify the bags in the subtree of T rooted at B and will only add to T leaf bags
that are matched. Moreover, at the end of this step, the vertices in bag B induce a graph
that has a perfect matching.

Observe that the size of a bag B can at most double from its original size since we add at
most one vertex for each vertex originally in the bag. This is true for all the newly added leaf
bags as well. Therefore, we have constructed a matched tree decomposition of width at most
2k+ 1. ◀

We now show an explicit family that has close to the worst-case relation between treewidth
and matched treewidth.

▶ Proposition 8. mtw(Kn,n) = 2n− 2 for all n > 1.

Proof. Let T be just an edge with vertex set {Kn,n \ {a},Kn,n \ {a ′}} for some a and a ′ that
are in the same part. One can easily verify that T is matched tree decomposition of Kn,n.
Thus mtw(Kn,n) ⩽ 2n− 2.

Let T be an arbitrary matched tree decomposition of Kn,n. Root T at a leaf bag, say X and let
X1 be the only child of X. If X ⊆ X1, then we can delete X from T . Therefore, there exists a
vertex u ∈ X of Kn,n such that u ̸∈ X1. So N(u) ⊆ X. Assume wlog that u ∈ A. Then, we get
B ⊆ X. Now to match the n vertices in B, we need at least n− 1 vertices from A in the bag
X. So mtw(Kn,n) ⩾ 2n− 2. ◀

It is easy to see that tw(Kn,n) = n. Therefore, its matched treewidth is only 3 less than the
worst case 2n+ 1.

We now use the Algorithm 2 and Definition 26 to count paths in cycles in sparse host graphs.
Instead of analyzing all graphs in Spasm(P10), we completely characterize the matched
treewidth of graphs with treewidth 2. This will simplify the case analysis required for proving
algorithmic upper bounds for many small pattern graphs.

4.1 Matched treewidth of partial 2-trees
In this section, we study the matched treewidth of partial 2-trees. A summary is given in
Table 2. From Theorem 7, we have mtw(G) ⩽ 5 when tw(G) = 2 which yields the last row.
The graph Y (See Figure 4) satisfies tw(Y) = 2 and mtw(Y) = 5. But Y is also an induced
subgraph of Z (See Figure 5) which satisfies tw(Z) = 2 and mtw(Z) = 4. Therefore, a

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 23

forbidden induced minor subgraph characterization is not applicable for this case. We now
prove the remaining two characterizations.

mtw ⩽ . Forbidden induced minor
2 C5

3 X

4 Not applicable.
5 None.

Table 2 Matched treewidth of partial 2-trees.

▶ Theorem 10. For any partial 2-tree G, the graph G is C5-induced-minor-free if and only if
mtw(G) = 2.

Proof. (Proof for the “if” direction) Suppose for contradiction that there is a partial 2-tree G

such that mtw(G) = 2 and G has a C5-induced-minor. Let T be a matched tree decomposition
of G with width 2. Since C5 is an induced minor, we can obtain C5 from G by deleting
vertices and contracting edges. For all v that is deleted, delete v from all bags of T . Similarly,
for all edges uv that are contracted, replace u and v consistently in all the bags of T by one
of u or v. We obtain a (not necessarily matched) tree decomposition T ′ of C5. Assume wlog
that T ′ is a reduced tree decomposition. Since T has width at most 2, any bag in T ′ contains
at most 3 vertices. If a bag in T ′ has 3 vertices, then they already form a P3 since it must
have been so in T . There cannot be a bag of one vertex in T ′ because it is reduced and
C5 is connected. We claim that a bag of size 2 in T ′ must contain some u and v such that
uv ∈ E(C5).

▷ Claim 32. Let u and v be two vertices in C5 that are not adjacent. Then, the tree
decomposition T ′ cannot contain the bag {u, v}.

Proof. Suppose for contradiction that T ′ contains the bag B = {1, 3}. The other cases are
symmetric. Root the tree T ′ at that bag. We now analyze various cases.

1. (B has one child) Since 1 and 3 are adjacent to other vertices, the child of B must contain
both 1 and 3, contradicting the fact that T ′ is reduced.

2. (B has more than one child) We split this case sub-cases.

a. (The edges 15 and 34 are covered in distinct subtrees (Say T1 and T2) of B) Since
45 ∈ E(C5), this edge must be covered. The bag that covers 45 must have a path
containing 5 to the bag covering 15 in T1 due to the connectivity of 5. Similarly, this
bag must have a path containing 4 to the bag covering 34 in T2 due to the connectivity
of 4. But, this is impossible since B contains only 1 and 3.

b. (The edges 15 and 34 are covered in the same subtree of B) This case is split into
further sub-cases.

i. (The bag B, and the bags containing 15 and 34 occur on the same path in T ′)
Suppose the path is from B to the bag containing 3 and 4 via the bag B ′ containing
1 and 5. The other case is similar. Then, the bag B ′ must contain 3 to maintain the
connectivity of 3. Now, we have B ′ ⊃ B, a contradiction.

24 Finding and Counting Patterns in Sparse Graphs

ii. (The bags containing 15 and 34 has a common ancestor that is a proper descendant
of B) Let B ′ be this common ancestor. This bag B ′ must contain 3 as it lies on the
path from B to the bag containing 3 and 4. Also, this bag B ′ must contain 1 as
this lies on the path from B to the bag containing 1 and 5. But, then B ′ ⊇ B, a
contradiction.

◀

This completes the proof of the "if" direction.

(Proof of the “only if” direction) We use proof by contradiction. Suppose G is a counter-
example on minimum number of vertices.

▷ Claim 33. The graph G is 2-connected.

Proof. Suppose G has a cut vertex v. By deleting v, we obtain smaller graphs G1, . . . ,Gm

for some m > 1. Any cycle in G is also a cycle in Gi for some i. Since G is minimal, each
Gi has a matched tree decomposition of width at most 2, say Ti. For all i, let Bi be a bag in
Ti that contains v. Add edges between B1 and Bi for all 1 < i ⩽ m. This is a matched tree
decomposition for G of width 2, a contradiction. ◀

We take a 2-tree G ′ that is a super-graph of G and has the same vertex set as G.

▷ Claim 34. Let uv be an edge in G ′ but not in G. Then u and v have a common neighbor
in G.

Proof. Since G is 2-connected, there are two internally disjoint paths P = uu1 · · ·ukv and
P ′ = uv1 · · · vℓv in G between u and v. We may assume that P and P ′ are induced paths in
G. If k or ℓ is 1, then u and v has a common neighbor. So we assume k and ℓ are at least
2. Now PP ′ is a cycle of length at least 6 and it must have a chord (otherwise, this is a
C5-induced-minor in G.). Therefore, there is some i and j such that ui is adjacent to vj. the
edges on P, P ′, together with this chord is a K4-minor in G ′, a contradiction. ◀

Let T be a standard tree decomposition of G ′. This is a matched tree decomposition for G.
We show that this is also a matched tree decomposition for G. It is enough to show that a
set {u, v,w} which forms a triangle in G ′ induces either a P3 or a triangle in G. Assuming
the contradiction, we get that v (say) is not adjacent to both u and w. By Claim 34, we
obtain vertices x that is a common neighbor of u and v in G, and y that is a common
neighbor of v and w in G. Since G ′ is K4-minor-free, we have x ̸= y, wx ̸∈ E(G), xy /∈ E(G),
and uy ̸∈ E(G). If uw ∈ E(G), then uwyvxu is an induced C5 in G, a contradiction. So
uw ̸∈ E(G), and by Claim 34, we obtain a vertex z that is a common neighbor of u and
w in G. Again, since G ′ is K4-minor-free, we have z ̸= x, z ̸= y, zx ̸∈ E(G), zv /∈ E(G),
and zy ̸∈ E(G). Then uzwyvxu is an induced C6 in G, a contradiction. This completes the
proof. ◀

We now show that the graph X (See Figure 1) is a partial 2-tree that has matched treewidth
more than 3.

▶ Lemma 35. mtw(X) ⩾ 4

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 25

Proof. Consider a reduced, matched tree decomposition T of X. Suppose for contradiction
that X has width strictly less than 4. Consider a leaf bag Bl in T . The bag Bl must contain u0

or u2 or u4 as all edges in X are incident on one of these vertices. All cases are symmetric so
wlog, we can assume Bl is a super-set of {u0,u1}. Consider the tree T to be rooted at Bl. As
neither u0 nor u1 is pendant and T is reduced, it follows that Bl must contain at least one
other vertex. Let Bp be the bag adjacent to Bl. We claim that {u0,u2} or {u0,u4} is contained
in Bp. If u0 /∈ Bp, then {u1,u ′

1,u5,u ′
5} ⊆ Bl and therefore |Bl| ⩾ 5. Suppose u1 ∈ Bp. Since

T is reduced, this means that some vertex other than u0 and u1 was in Bl but not in Bp. If
this vertex is u2 or u4, then |Bl| ⩾ 5. If it is one of the other vertices, either u2 or u4 is in
Bl and Bp. If u1 /∈ Bp, then Bl must contain u2 and therefore so must Bp. Now, we assume
wlog that both u0 and u2 are in the bag Bp. If Bp also contains u4, then we are done as the
size of matched bag would be at least 5.

Let Bc be a descendant bag of Bp in T such that Bc is the root of the subtree of T that contains
u4. Again, if {u0,u2,u4} ⊆ Bc, then |Bc| ⩾ 5 and we are done. So assume wlog that u2 /∈ Bc.
If u0 /∈ Bc, then Bc ⊇ {u5,u ′

5,u3,u ′
3} and we are done. This is because these vertices are

common neighbors of u4 with u0 or common neighbors of u4 with u2 and Bc is the root bag
of the sub-tree where u4 appears in T . So u0 is also in Bc. But Bc also contains u3 and u ′

3
and Bc must contain at least one more vertex to match u0. ◀

We now prove that forbidding X-induced-minor (for partial 2-trees) exactly gives us the class
of graphs with mtw(.) ⩽ 3.

▶ Definition 36. A minimum chordal completion G̃ of some graph G is said to be special if no
independent set of size 3 in G induces a clique in G̃. We write smcc instead of special minimum
chordal completion.

Note that treewidth of a graph is same as the treewidth of its smcc (if it exists).

▶ Theorem 11. For any partial 2-tree G, the graph G is X-induced-minor-free if and only if
mtw(G) ⩽ 3.

Proof. (Proof for the “if” direction) Let G be a graph with a matched tree decomposition U

of width 3. Suppose for contradication that G has an X-induced-minor. Then, we can also
obtain X by contracting some edges of an induced subgraph of X ′ of G. Let T ′ be the tree
decomposition of X ′ obtained from U by deleting vertices in the set S from all bags. Since X

can be obtained from X ′ by contracting some edges, it will have a set of three vertices, say
u0,u2,u4, that form an independent set and internally vertex-disjoint paths Qi+1,Q ′

i+1 from
ui to ui+2

4. We define the map f : V(X ′) 7→ V(X) is such that f(ui) = ui for i ∈ {0, 2, 4}, f
maps all internal vertices in the path Qi+1 to ui+1 and Q ′

i+1 to u ′
i+1. The map f corresponds

to the edge contraction that we use to obtain X from X ′. Let T be the tree-decomposition of
X obtained from T ′ by applying f to all vertices in all bags. We can remove bags of size 0 and
size 1 from T using standard techniques.

Now we modify T to obtain a matched tree decomposition of width 3 for X thereby deriving
a contradiction. Every bag B in T has a corresponding bag P in T ′. Note that if uv is an edge
in X ′, then f(u)f(v) is an edge in X, whenever f(u) ̸= f(v). If B has size 4, then since U is a
matched tree decomposition, the bag P must also be matched. Therefore, if all bags in T ′ has

4 All indices i for ui and u′
i in this proof are modulo 6.

26 Finding and Counting Patterns in Sparse Graphs

size 4, we are done. Otherwise, there is a bag B in T that has size less than three. We root
the tree T at B and modify T in a top-down fashion. We need the following claim to prove
the correctness of this procedure.

▷ Claim 37. Let B ′ be some bag in T of size 3, then the vertices in B ′ cannot form an
independent set of size 3 in X.

Proof. If the corresponding bag P to B ′ in U has size 4, then since U is a matched tree
decomposition, the bag P is matched. So B ′ was obtained by the deletion of a vertex or the
contraction of an edge. Both of which will retain at least one edge in the bag.

If the corresponding bag P has size 3, then since U is a matched tree composition, the
subgraph induced by B ′ has P3 as a subgraph. ◀

So we can assume the following:

1. Every bag in T of size 4 is matched.

2. Every bag in T of size 3 has at least one edge.

3. There are no bags in T of size 0 or size 1.

We now process a bag B, starting from the root, assuming that all ancestors of B are already
matched. We split the procedure into two cases.

(|B| = 3) Let B = {u, v,w}, uv is an edge, and w is not adjacent to u or v. If w is present in
the parent of B, then it is matched to some w ′. We add w ′ to B as well. If w is not present in
the parent, then we choose a nearest descendant B ′ of B in T that contains a neighbor w ′

of w. Every bag in the path from B to B ′ contains w. We add w ′ to every bag in this path.
Now, the bag B is matched. Also, every other bag that we modified (in the path from B to B ′)
now has size 3 and has at least one edge or has size 4 and is matched. So all properties are
preserved.

(|B| = 2) Let B = {u, v} and uv is not an edge. If u is present in B’s parent in T , then it is
matched to some u ′ there. We add u ′ to B. Otherwise, we choose a nearest descendant B ′ of
B in T that contains a neighbor u ′ of u. We add u ′ to all bags in the path from B to B ′. B is
now a bag of size 3 with at least one edge. Also, every other bag that we modified now has
size 3 and has at least one edge or has size 4 and is matched. Now, if B is matched we are
done. Otherwise, we apply the previous case to B.

(Proof for the “only if” direction) We now prove a series of lemmas that will prove the
theorem.

▶ Lemma 38. Let G be a graph with tw(G) ⩽ 2 and G̃ is a smcc of G. If there exists three
internally disjoint paths from a vertex u to v in G, then uv is an edge in G̃

Proof. Suppose for contradiction u is not adjacent to v. Let Q1,Q2,Q3 be three internally
disjoint paths from u to v. Let Q ′

1,Q ′
2 be the shortest path from u to v in G̃[V(Q1)] and

G̃[V(Q2)], respectively. Note that both of them are of length at least 3. Since G̃ is chordal,
the cycle obtained from Q ′

1 and Q ′
2 has a chord say xy. Note that {x,y} ∩ {u, v} = ∅. Without

loss of generality, we may assume that x is in Q ′
1. So y is in Q ′

2. Therefore, Q ′
1,Q ′

2 and Q3

gives a minor of K4 in G̃. This is a contradiction. ◀

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 27

▶ Lemma 39. Let G be a X-induced-minor-free connected graph with tree-width 2. Then, there
exists a smcc G̃ of G.

Proof. Suppose for contradiction that there exists a minimal counter-example G with
tw(G) ⩽ 2 that is X-induced-minor-free but does not have a smcc. Since G is minimal,
it has to be biconnected and by the characterization of treewidth 2 graphs, we can assume
that G is series-parallel. We will use the series-parallel graph characterization to prove that
G does not exist.

Let s and t be the source and terminal of G. Since G is a counter example, it is not an edge.
Suppose (G, s, t) is the series composition of (G1, s1, t1) with (G2, s2, t2) (t1 is identified with
s2). Since G is a minimal counter example, there exists smccs G̃1 of G1 and G̃2 of G2. Let G̃
be the graph obtained from G̃1 and G̃2 by identifying t1 with s2. The graph G̃ is a smcc of
G, a contradiction. Hence, the graph (G, s, t) is the parallel composition of strictly smaller
graphs (G1, s1, t1) and (G2, s2, t2).

▷ Claim 40. Let G be the parallel composition of two smaller graphs G1 and G2. Furthermore,
assume that G1 is the series composition of two or more graphs G ′

i for 1 ⩽ i ⩽ m. Then, for
all 1 ⩽ i ⩽ m, if G ′

i is not an edge, then s ′it
′
i is also not an edge.

Proof. Suppose there exists 1 ⩽ i ⩽ m such that G ′
i is not an edge but s ′it

′
i is an edge in G ′

i.
So G ′

i is of order at least 3. There exists a smcc Gi of the graph obtained from G by deleting
all the internal vertices of G ′

i (Since G is a minimum counter example). Again there exists a
smcc G̃ ′

i of G ′
i. Define G̃ to be the graph obtained from Gi and G̃ ′

i by identifying the edge
s ′it

′
i. The graph G̃ is a smcc of G. ◀

Note that at least one of G1 or G2 is not an edge. We now split the proof into two exhaustive
cases:

(Case 1) Either G1 or G2 is an edge.

Without loss of generality we may assume that G2 is an edge. So s1t1 is not an edge in
G1 (as otherwise G1 = G). Suppose (G1, s1, t1) is a parallel composition of (G3, s3, t3)

and (G4, s4, t4). Since s1t1 ̸∈ E(G1), we have s3t3 ̸∈ E(G3) and s4t4 ̸∈ E(G4). Therefore,
both G3 and G4 has at least one internal vertex. Let G ′

3 be the graph obtained from
G3 by adding the edge s3t3 and G ′

4 be the graph obtained from G4 by adding the edge
s4t4. Since G is a minimum counter example, there exists smccs G̃ ′

3 of G ′
3 and G̃ ′

4 of
G ′

4. Note that G is obtained from G ′
3 and G ′

4 by identifying edges s3t3 and s4t4. So the
graph G̃ obtained from G̃ ′

3 and G̃ ′
4 by identifying those edges is a smcc of G. This is a

contradiction.

We may assume that (G1, s1, t1) is a series composition of smaller graphs (G ′
1, s ′1, t ′1),

(G ′
2, s ′2, t ′2), . . . , (G ′

m, s ′m, t ′m) for some m ⩾ 2 such that for all 2 ⩽ i ⩽ m, the vertex
t ′i−1 is identified with s ′i and for all 1 ⩽ i ⩽ m, (G ′

j, s
′
j, t

′
j) is either an edge or a parallel

composition of two smaller graphs.

Note that G is not a cycle since G is a counter example. So, there exists some i such that
the graph G ′

i is not an edge. Therefore, by Claim 40, we have that s ′it
′
i is not an edge.

▷ Claim 41. There does not exist 1 ⩽ j(̸= i) < k(̸= i) ⩽ m such that s ′jt
′
j, s

′
kt

′
k are

non-edges.

28 Finding and Counting Patterns in Sparse Graphs

Proof. Suppose s ′jt
′
j, s

′
kt

′
k are non-edges, for some 1 < j(̸= i) < k(̸= i) ⩽ m. Without

loss of generality, we may assume that i < j. So G ′
i is a parallel composition of two smaller

graphs. Hence there exist two internally disjoints paths Q1,Q ′
1 (each of length at least

3), from s ′i to t ′i in G ′
i. Similarly there exist two internally disjoints paths Q2,Q ′

2 (each
of length at least 3), from s ′j to t ′j in G ′

j. Also there exist two internally disjoints paths
Q3,Q ′

3 (each of length at least 3), from s ′k to t ′k in G ′
k. Again, there exists a path from t ′i

to s ′j, through G ′
i+1, . . .G ′

j−1, a path from t ′j to s ′k through G ′
j+1, . . .G ′

k−1. Again we have
a path from t ′k to s ′i through G ′

k+1, . . .G ′
m, s ′mt ′1,G ′

1, . . .G ′
i−1. This gives a subdivision of

X. This a contradiction. Hence, the above claim is true. ◀

▷ Claim 42. There exists a smcc of G ′
i such that s ′it

′
i is an edge in the completion.

Proof. Since s ′i is not adjacent to t ′i, (G
′
i, s

′
i, t

′
i) is parallel composition of two smaller

graphs (By Claim 40), say (G3, s3, t3) and (G4, s4, t4). Let G ′ be the graph obtained from
G by contracting the edge st. This is an X-induced-minor-free graph. The minimality of
G says that G ′ has an smcc, say G̃ ′. By Lemma 38, s ′i is adjacent to t ′i in G̃ ′. Note that
the graph induced by the vertices of G ′

i in G̃ ′ is a smcc of G ′
i in which s ′it

′
i is an edge.

◀

By Claim 41, the following cases are now exhaustive.

(Case 1a) s ′jt
′
j is an edge, for all 1 ⩽ j(̸= i) ⩽ m.

By the above claim, there exists a smcc G̃ ′
i of G ′

i in which s ′it
′
i is an edge. We construct

an smcc of G as follows: It contains the smcc G̃ ′
k for all G ′

k and the edge st. We then
add the edges ss ′i and s ′it

′
j for all 1 ⩽ j(̸= i) ⩽ m. These edges ensure that there are

no chordless cycles through G1 and G2. This smcc gives us a contradiction.

(Case 1b) There exists 1 ⩽ j(̸= i) ⩽ m such that s ′i is not adjacent to t ′j.

Without loss of generality we may assume that i < j. By the claim 42, there exists a
smcc G̃ ′

i, G̃
′
j of G ′

i and s ′j, respectively, such that s ′it
′
i ∈ E(G̃ ′

i) and s ′jt
′
j ∈ E(G̃ ′

j). We
construct an smcc of G as follows: It contains the smcc G̃ ′

k for all G ′
k and the edge st.

We then add edges t ′is
′
k for all 1 ⩽ k < i, st ′k for all i < k < j, and s ′jt and s ′jt

′
k for all

j < k ⩽ m. This smcc gives us a contradiction.

The above constructions are illustrated in Figure 3. The edges colored black are the edges
in G. The red colored edges are those added to construct the smcc.

(Case 2) Both G1 and G2 are not edges. Suppose G1 and G2 both are parallel composition
of smaller graphs. So there exists two internally disjoints paths P,P ′ from s1 to t1 in G1

and two internally disjoints paths Q,Q ′ from s2 to t2 in G2. Let G ′ be the graph obtained
from G1 by adding Q. Since, G is a minimum counter example, G ′ has a smcc G̃ ′. Again,
P,P ′,Q are three mutually internally disjoint paths from s1 to t1. By, lemma 38, s1t1 is
an edge in G̃ ′. The graph G̃1 induced by V(G1) in G̃ ′ is a smcc such that s1t1 is an edge
in G̃1. Similarly, we can show that there exists a smcc G̃2 of G2 such that s1t2 is an edge
in G̃2. The graph obtained from G̃1 and G̃2 by identifying the edges s1 with s2 and t1

with t2 is a smcc of G.

We may assume that at least one of G1 or G2 is a series composition of graphs. We
decompose G1 and G2 into series composed graphs repeatedly, until we cannot. i.e.,

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 29

case (1a)

case (1b)

Figure 3 Constructing smcc in case 1.

all the individual components are parallel compositions or an edge. Let (G1, s1, t1)

be series compositions of (G ′
1, s ′1, t ′1), (G

′
2, s ′2, t ′2), . . . , (G ′

m, s ′m, t ′m) and let (G2, s2, t2) be
series compositions of (G ′

m+1, s ′m+1, t ′m+1), (G
′
m+2, s ′m+2, t ′m+2), . . . , (G ′

m+ℓ, s
′
m+ℓ, t

′
m+ℓ)

in that order.

▷ Claim 43. There exists a 1 ⩽ i ⩽ m+ ℓ such that s ′it
′
i is an edge.

Proof. Suppose for contradiction that s ′i is not adjacent to t ′i, for all 1 ⩽ i ⩽ m+ ℓ. So,
the graph (G ′

1, s ′1, t ′1) is a parallel composition of two smaller graphs. Hence, there exists
two internally disjoint paths, each of length at least 3, from s ′1 to t ′1 in G ′

1. Similarly, there
are two internally disjoint paths, each of length at least 3, from s ′i to t ′i in G ′

i, for all
1 ⩽ i ⩽ m+ ℓ. Since m+ ℓ > 2, we get an X-induced-minor in G, a contradiction. ◀

Thus, there exists a 1 ⩽ i ⩽ m+ ℓ such that s ′it
′
i is an edge. By Claim 40, we can conclude

that G ′
i is an edge. Without loss of generality, we may assume that 1 ⩽ i ⩽ m. Note that

(G \ {s ′it
′
i}, s

′
i, t

′
i), is the graph obtained by the series composition of G ′

i−1,G ′
i−2, . . . ,G ′

1,
G2,G ′

m,G ′
m−1, . . . ,G ′

i+1 by identifying s ′i−k, s ′1, t2, t ′j with t ′i−k+1, s2, t ′m and s ′j, respect-
ively, for 1 ⩽ k < i and i < j ⩽ m. Again, the graph (G, s ′i, t

′
i) is the parallel composition

of (G \ {s ′it
′
i}, s

′
i, t

′
i) with an edge. Now, we can use case (1) to get a contradiction. Hence,

a minimum counter example does not exist.

◀

▶ Lemma 44. Let G be a graph with treewidth k and T be a tree decomposition of G such that
no bag of size k+ 1 of T is independent in G. Then, mtw(G) ⩽ 2tw(G) − 1.

Proof. Observe that in the proof of Theorem 7, the construction yields a matched tree
decomposition of width 2tw(G) − 1 if each bag of size tw(G) + 1 has at least one edge. ◀

By Lemma 39, every G such that tw(G) = 2 and G is X-induced-minor-free has an smcc. Now,
a standard tree decomposition T of G̃ is also a tree decomposition of G with the additional
property that every bag of size 3 has at least one edge. We apply Lemma 44 to construct a
matched tree decomposition of width 3 for G. ◀

30 Finding and Counting Patterns in Sparse Graphs

To complete the characterization of matched treewidth of partial 2-trees, we prove the
following lemma.

u1

u7

u5

u2u3

u12

u14

u9

u11

u4

u6

u8

u10

u15

u13

Figure 4 The graph Y.

▶ Lemma 45. mtw(Y) ⩾ 5

Proof. The proof is similar to the proof of Lemma 35. We additionally use the fact that
u1, u2, and u3 do not have any common neighbors. Suppose for contradiction that Y has a
reduced, matched tree decomposition T of width strictly less than 5. Let Bl be a leaf in T . We
first argue that Bl must contain one of u1, u2, or u3. If not, it contains only a subset of the
other edges, say, like u4u5 (other cases are symmetric). Since those vertices are not pendant,
the neighbor of Bl in T , which we call Bp, will be a superset of Bl. Suppose Bl contains u1

and u4 (rest of the cases are symmetric). Since T is reduced and has width less than 5, the
bag Bp must contain both u1 and u2 (or u1 and u3, a symmetric case). Root T at Bl.

If u3 ∈ Bp, we are done since |Bp| ⩾ 6. Let Bc be the closest descendant of Bp that contains
u3. Assume wlog that u2 /∈ Bc. Both u1 and u2 cannot be missing from Bc. In that case, all
neighbors of u3 must be in Bc and that will imply |Bc| ⩾ 6. So u1 and u3 are both in Bc (the
other case is symmetric). It must also contain a vertex v that is a neighbor of u1 since it is
matched. Consider the path P from Bp to Bc in T . If u8 (u10) does not appear in this path,
then u9 (u11 resp.) must appear on all bags in this path. Therefore, Bp will have to contain
u3 to match u9 (or u11). So u8 and u10 must appear in this path.

Let B1 be the first bag in P where both u8 and u10 have appeared. We split the proof into
two cases.

(Both u8 and u10 appear in B1) If u2 /∈ B1, then |B1| ⩾ 6 and we are done. Otherwise,
B1 = {u1, v,u2,u8,u10} for some neighbor v of u1. Let B2 be the first bag from B1 to Bc

where the edge u8u9 or u10u11 appears. Then, either B2 = {u1, v,u2,u10,u8,u9} (u10u11 has
not appeared) or B2 = {u1, v,u10,u11,u8,u9} (both edges appear simultaneously) and we
are done.

(One of u8 or u10 is missing from B1) This means either u9 or u11 is in B1. We have either
B1 = {u1, v,u2,u10,u9,u3} or B1 = {u1, v,u2,u8,u11,u3} and we are done. ◀

Figure 5 is a super-graph of Y that has lower matched treewidth.

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 31

u1

u7

u5

u2u3

u12

u14

u9

u11

u4

u6

u8

u10

u15

u13

v

u1u4u5u6u7

u1vu5u7u2

u1vu2u8u9

u1vu2u9u3

u1vu2u3u11

u1vu3u14u12u1vu2u10u11

u1u13u12u14u15

Figure 5 The graph Z and its matched tree decomposition of width 4.

4.2 Finding and counting Subgraphs and induced subgraphs using
matched treewidth

▶ Theorem 12. Given an m-edge graph H as input, we can count the number of Pk subgraphs,
where k ⩽ 10, in Õ(m2)-time.

Proof. There are more than 300 graphs in Spasm(P10). We have verified that all of them
have mtw at most 3. To minimize the work, we can filter out all graphs in the spasm that
has tw(G ′) = 1 or tw(G ′) = 2 and G ′ is X-induced-minor-free. Observe that since X has
9 vertices 12 edges, it cannot be an induced minor in any of the graphs in Spasm(P10).
Also, none of the forbidden minors for treewidth 4 can appear in Spasm(P10). Therefore,
we only need to analyze graphs of treewidth 3 in Spasm(P10). There are only 18 such
graphs. They are listed in a pdf file in the repository associated with this paper (https:
//github.com/anonymous1203/Spasm).

Since Spasm(Pk) ⊆ Spasm(Pk+1) for all k ⩾ 2, we can make the same claim for all paths on
fewer than 10 vertices. We now use Equation 1 to compute the result. ◀

▶ Remark 46. Since K5 ∈ Spasm(P11), and treewidth of K5 is 4, the above method cannot
yield an Õ(m2) algorithm for Pk where k ⩾ 11.

We note that the above proof also yields Õ(m2) time algorithms for counting any pattern
in Spasm(P10). This is because if G ∈ Spasm(P10), then Spasm(G) ⊆ Spasm(P10). In the
following theorem, we point out an important class of graphs in Spasm(P10).

▶ Theorem 13. Given an m-edge graph H as input, we can count the number of cycles of length
at most 9 in Õ(m2)-time.

Proof. We observe that Spasm(Ck) ⊂ Spasm(P10) for k ⩽ 9. ◀

▶ Remark 47. Since K5 ∈ Spasm(C10), and treewidth of K5 is 4, the above method cannot
yield an Õ(m2) algorithm for Ck where k ⩾ 10.

https://github.com/anonymous1203/Spasm
https://github.com/anonymous1203/Spasm

32 Finding and Counting Patterns in Sparse Graphs

We can also use our efficient construction of arithemetic circuits for homomorphism poly-
nomials for detecting small induced subgraphs. Brute-force search finds, or even counts
C6 as induced subgraphs in an m-edge host graph in O(m3) time. Bläser, Komarath, and
Sreenivasaiah [2] showed that efficient computation of homomorphism polynomials can be
used to speed-up the detection of induced subgraphs. For example, their techniques can be
used to show that detecting an induced C6 in an n-vertex host graph can be done in O(n4)

time. In this section, we derive an Õ(m2) algorithm for detecting induced C6 in an m-edge
host graph. This algorithm is a natural analogue of the algorithm by Blas̈er, Komarath and
Sreenivasaiah [2].

We now give some definitions that are necessary to understand how homomorphism polyno-
mials are used in induced subgraph detection.

▶ Definition 48. We define the induced subgraph isomorphism polynomial for pattern graph G

on n-vertex host graphs, denoted IndG, as follows. The variables of the polynomial are yv and
x{u,v} for all u, v ∈ [n].

IndG =
∑
G′

∏
v

yv

∏
e

xe
∏
f

(1 − xf)

where G ′ ranges over all (not-necessarily induced) subgraphs of Kn isomorphic to G, v ranges
over the vertices of G ′, e ranges over the edges of G ′, and f ranges over the edges in Kn between
vertices in G ′ but not in G ′.

We denote by IndG(E(H)), the polynomial obtained by substituting the adjacency in H for
the edge variables. Note that the monomials of IndG(E(H)) are products of |V(G)| vertex
variables and correspond to the induced subgraphs of H isomorphic to G. In addition, these
monomials all have coefficient 1 because there can only be at most 1 induced subgraph
isomorphic to G on any given k vertices. The induced subgraph polynomials and subgraph
polynomials are related via the equation:

IndG(E(H)) =
∑
G′

(−1)|E(G
′)−E(G)|#SubG[G

′]SubG′ [H](xe = 1) (2)

where G ′ ranges over all k-vertex supergraphs of G and #SubG[G
′] denotes the number of

times G occurs as a subgraph in G ′. We use the substitution (xe = 1) to denote that all edge
variables in the polynomial are substituted with 1. Variants of this equation have been used
by many authors for induced subgraph detection (See [23, 2, 16]).

We now briefly describe how to use homomorphism polynomials to detect induced subgraph
isomorphisms (See [2] for a more detailed description). Note that the IndG(E(H)) has the
monomial xv1 · · · xvk

if and only if v1, . . . , vk induces a G. Therefore, to check whether
G occurs as an induced subgraph, we only have to test whether IndG(E(H)) is non-zero.
Furthermore, the coefficient of every monomial is 1 because a k-vertex subgraph can contain
at most one induced subgraph isomorphic to G. Therefore, whether H contains an induced
subgraph isomorphic to G can be reduced to whether IndG(E(H)) is non-zero modulo 2. The
advantage of computing over a ring of characteristic 2 is that it eliminates all SubG′ [H](xe =

1) from the right-hand side of Equation 2 for which #SubG[G
′] is even. However, we

do not have efficient computations for subgraph polynomials. Here, we make use of the
observation that SubG′ [H](xe = 1) is equal to the multilinear part of 1

#Aut(G′)HomG′ [H](xe =

1). Therefore, to test whether SubG′ [H](xe = 1) is non-zero modulo 2, we need only test
whether 1

#Aut(G′)HomG′ [H](xe = 1) contains a multilinear term with an odd coefficient.

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 33

To check the presence of multilinear terms with odd coefficients, we can randomly substitute
elements that satisfy the equation x2 = 0 from group algebras over Z2 [15]. We stress that
we only substitute these elements for the vertex variables. The edge variables are all always
replaced by 0 or 1. The use of a characteristic-2 ring introduces another issue. We now cannot
compute 1

#Aut(G′)HomG′ [H](xe = 1) for graphs that have an even number of automorphisms,
by finding the homomorphism polynomial and dividing by the number of automorphisms.
The solution is to compute a polynomial that avoids these automorphisms in the multilinear
part of HomG′ [H](xe = 1) for each such G ′ so that this division becomes unnecessary, while
being careful not to introduce additional multilinear terms. This is the crux of the following
proof.

▶ Theorem 14. Given an m-edge host graph as input, we can find an induced C6 or report that
none exists in Õ(m2)-time.

Proof. We describe how to compute polynomials for which the multilinear part is the same as
HomG′ [H](xe = 1) and the coefficient of all monomials are odd for all 6-vertex supergraphs
of C6 that contain C6 an odd number times. The complete list is given in Figure 6.

These computations involve modifying Algorithm 2 slightly for each such G ′. We consider the
case of C6. Each multilinear monomial in HomC6 [H](xe = 1) has coefficient 12. By ensuring
that only homomorphisms σ where σ(2) = min(σ(2),σ(3),σ(5),σ(6)) are present in the
polynomial, we can ensure that all C6 subgraphs of H are counted exactly thrice, once for
each choice of {σ(1),σ(4)}. This check can be done when the algorithm processes bag 2365
(Figure 6) in Line 22. Notice that we need to iterate only over the edges present in H in the
algorithm. This is because the other edge variables will be substituted with 0 anyway and
those monomials will definitely vanish. This is crucial in ensuring that our algorithm remains
Õ(m2) and not Õ(n4).

We consider one more case from our list. The graph in the first row and third column in
Figure 6 has four automorphisms (horizontal flip and vertical flip). We can ensure that these
subgraphs are counted exactly once in the polynomial by ensuring that Line 22 in Algorithm 2
also checks that σ(3) < σ(6) (preventing horizontal flips) and σ(2) < σ(4) (preventing
vertical flips). These checks can be done when the algorithm processes the bag 1634 and
1234 respectively.

Figure 6 shows the matched tree decompositions and the constraints on σ that can be used
to apply Algorithm 2 to compute all these polynomials.

◀

▶ Theorem 15. Given an m-edge host graph as input, we can find an induced Pk or report that
none exists in Õ(m(k−2)/2)-time.

Proof. We first prove that Pk has matched treewidth k− 3. We only consider the case of odd
k (the even case is similar). Let vertices in the path be 1, 2, . . . , 2j+ 1. Then, our matched
tree decomposition will have three bags. A root bag that excludes only {j, j+ 2}, a left child of
the root bag that excludes {j, j+1}, and a right child of the root bag that excludes {j+1, j+2}.
This is clearly a tree decomposition. To see that it is matched, at the root bag, we have the
matched matching (1, 2j+ 1), (2, 2j), . . . , (j− 1, j+ 3), (j+ 1, j+ 3). On the left child, we can
keep the rest of edges the same and match (j + 2, j − 1). Similarly, on the right child, we
match (j, j+ 3).

34 Finding and Counting Patterns in Sparse Graphs

1

2

3

4

5

6

126

2365

345

σ(2) = min(σ(2),σ(3),σ(5),σ(6))

1

2

3

4

5

6

σ(2) < σ(6)

1 2

3

45

6

126

2365

345

1234

1634

1654

σ(3) < σ(6),σ(2) < σ(4)

1 2

3

45

6

1236

3645

1

2

3

45

6

6123

6234

654

σ(4) < σ(6)

2

46

1 2345

1245

1456

σ(3) < σ(5)

3

5

1

2

3

4

5

6

1256

2356

3456

1

2

3

4

5

6

1264

3264

5264

σ(2) < σ(4) < σ(6)

1

2

3

45

6

6123

6234

6254

σ(1) < σ(3)
1

2

3

4

5

6

126

2365

345

σ(2) = min(σ(2),σ(3),σ(5),σ(6))

1

2

3

4

5

6

126

2365

345

σ(2) < σ(5)

1

2

3

4

5

6

1256

2356

3456

σ(4) < σ(6)

1

2

3

4

5

6

1263

6134

6534

σ(5) < σ(6)

1

2

34

6

5

σ(2) < σ(6)

1265

2564

2534

1

2

3

4

5

6

1426

2645

2345

σ(1) < σ(4),σ(1) < σ(2) < σ(6)

1

2

3

4

5

6

1426

2645

2345

σ(2) < σ(4)

1

2

35

6

4

σ(2) < σ(6)

1265

2564

2534

1

2

35

6

4

σ(2) < σ(6)

1246

2564

2534

Figure 6 Detecting Induced C6

B. Komarath, A. Kumar, S. Mishra, and A. Sethia 35

Since Pk has two automorphisms, we also need to show that we can avoid one automorphism
while computing the homomorphism polynomial. We note that the non-identity automorph-
ism τ must have τ(1) = k and τ(k) = 1. Therefore, we can avoid this by always ensuring that
σ(1) < σ(k) when building the homomorphism polynomial in Algorithm 2.

We know that IndPk
(E(H)) = SubPk

[H](xe = 1) (mod 2). The theorem follows. ◀

5 Acknowledgement:

The research work of S. Mishra is partially funded by Fondecyt Postdoctoral grant 3220618
of Agencia National de Investigatión y Desarrollo (ANID), Chile.

References
1 N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica,

17(3):209–223, Mar 1997. doi:10.1007/BF02523189. (↑ 2, 3, 8, 14)

2 Markus Bläser, Balagopal Komarath, and Karteek Sreenivasaiah. Graph pattern polynomials. In
Sumit Ganguly and Paritosh K. Pandya, editors, 38th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2018, December 11-13, 2018,
Ahmedabad, India, volume 122 of LIPIcs, pages 18:1–18:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.FSTTCS.2018.18. (↑ 4, 8, 32)

3 Marco Bressan and Marc Roth. Exact and approximate pattern counting in degenerate graphs:
New algorithms, hardness results, and complexity dichotomies. In 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS), pages 276–285, 2022. doi:10.1109/
FOCS52979.2021.00036. (↑ 8)

4 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for counting
small subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, page 210–223, New York, NY, USA, 2017. Association for Computing
Machinery. doi:10.1145/3055399.3055502. (↑ 2, 3, 8, 14)

5 Radu Curticapean and Dániel Marx. Complexity of counting subgraphs: Only the boundedness of
the vertex-cover number counts. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 130–139. IEEE Computer
Society, 2014. doi:10.1109/FOCS.2014.22. (↑ 8)

6 Josep Díaz, Maria J. Serna, and Dimitrios M. Thilikos. Counting h-colorings of partial k-trees. In
Proceedings of the 7th Annual International Conference on Computing and Combinatorics, COCOON
’01, page 298–307, Berlin, Heidelberg, 2001. Springer-Verlag. (↑ 4, 6)

7 Julian Dörfler, Marc Roth, Johannes Schmitt, and Philip Wellnitz. Counting induced subgraphs:
An algebraic approach to #w[1]-hardness. Algorithmica, 84(2):379–404, 2022. doi:10.1007/
s00453-021-00894-9. (↑ 8)

8 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and
dominating set. Theoretical Computer Science, 326:57–67, 10 2004. doi:10.1016/j.tcs.2004.
05.009. (↑ 3)

9 Peter Floderus, Mirosław Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Induced subgraph
isomorphism: Are some patterns substantially easier than others? In Joachim Gudmundsson,
Julián Mestre, and Taso Viglas, editors, Computing and Combinatorics, pages 37–48, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. (↑ 7, 8)

https://doi.org/10.1007/BF02523189
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.18
https://doi.org/10.1109/FOCS52979.2021.00036
https://doi.org/10.1109/FOCS52979.2021.00036
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1109/FOCS.2014.22
https://doi.org/10.1007/s00453-021-00894-9
https://doi.org/10.1007/s00453-021-00894-9
https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1016/j.tcs.2004.05.009

36 Finding and Counting Patterns in Sparse Graphs

10 Jacob Focke and Marc Roth. Counting small induced subgraphs with hereditary properties. In
Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium
on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1543–1551. ACM, 2022. doi:
10.1145/3519935.3520008. (↑ 8)

11 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh, and B. V. Raghavendra
Rao. Faster algorithms for finding and counting subgraphs. J. Comput. Syst. Sci., 78(3):698–706,
2012. doi:10.1016/j.jcss.2011.10.001. (↑ 3)

12 Archontia C. Giannopoulou and Dimitrios M. Thilikos. Obstructions for tree-depth.
Electronic Notes in Discrete Mathematics, 34:249–253, 2009. European Conference on
Combinatorics, Graph Theory and Applications (EuroComb 2009). URL: https://www.
sciencedirect.com/science/article/pii/S1571065309000821, doi:https://doi.org/10.
1016/j.endm.2009.07.041. (↑ 18)

13 Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced subgraphs
efficiently. Inf. Process. Lett., 74(3-4):115–121, 2000. doi:10.1016/S0020-0190(00)00047-8.
(↑ 2, 3)

14 Balagopal Komarath, Anurag Pandey, and C. S. Rahul. Graph homomorphism polynomials:
Algorithms and complexity. CoRR, abs/2011.04778, 2020. URL: https://arxiv.org/abs/2011.
04778, arXiv:2011.04778. (↑ 3, 4)

15 Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In International
Colloquium on Automata, Languages, and Programming, pages 575–586. Springer, 2008. (↑ 33)

16 Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Counting and detecting small
subgraphs via equations. SIAM J. Discret. Math., 27:892–909, 2013. (↑ 3, 4, 32)

17 Jaroslav Nešeťril and Svatopluk Poljak. On the complexity of the subgraph problem. Commenta-
tiones Mathematicae Universitatis Carolinae, 026(2):415–419, 1985. URL: http://eudml.org/
doc/17394. (↑ 2)

18 Marc Roth, Johannes Schmitt, and Philip Wellnitz. Detecting and Counting Small Subgraphs, and
Evaluating a Parameterized Tutte Polynomial: Lower Bounds via Toroidal Grids and Cayley Graph
Expanders. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International
Colloquium on Automata, Languages, and Programming (ICALP 2021), volume 198 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 108:1–108:16, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/
volltexte/2021/14177, doi:10.4230/LIPIcs.ICALP.2021.108. (↑ 8)

19 Virginia Vassilevska. Efficient Algorithms for Path Problems in Weighted Graphs. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA 15213, 2008. (↑ 8)

20 Douglas B. West. Introduction to Graph Theory. Prentice Hall, September 2000. (↑ 9)

21 Ryan Williams. Maximum two-satisfiability. Encyclopedia of Algorithms, pages 507–510, 2008.
doi:10.1007/978-0-387-30162-4_227. (↑ 2)

22 Ryan Williams. Finding paths of length k in o*(2k) time. Inf. Process. Lett., 109(6):315–318, feb
2009. doi:10.1016/j.ipl.2008.11.004. (↑ 2, 3)

23 Virginia Vassilevska Williams, Joshua R. Wang, Ryan Williams, and Huacheng Yu. Finding four-
node subgraphs in triangle time. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’15, page 1671–1680, USA, 2015. Society for Industrial and Applied
Mathematics. (↑ 4, 32)

https://doi.org/10.1145/3519935.3520008
https://doi.org/10.1145/3519935.3520008
https://doi.org/10.1016/j.jcss.2011.10.001
https://www.sciencedirect.com/science/article/pii/S1571065309000821
https://www.sciencedirect.com/science/article/pii/S1571065309000821
https://doi.org/https://doi.org/10.1016/j.endm.2009.07.041
https://doi.org/https://doi.org/10.1016/j.endm.2009.07.041
https://doi.org/10.1016/S0020-0190(00)00047-8
https://arxiv.org/abs/2011.04778
https://arxiv.org/abs/2011.04778
http://arxiv.org/abs/2011.04778
http://eudml.org/doc/17394
http://eudml.org/doc/17394
https://drops.dagstuhl.de/opus/volltexte/2021/14177
https://drops.dagstuhl.de/opus/volltexte/2021/14177
https://doi.org/10.4230/LIPIcs.ICALP.2021.108
https://doi.org/10.1007/978-0-387-30162-4_227
https://doi.org/10.1016/j.ipl.2008.11.004

	1 Introduction
	1.1 Connection to arithmetic circuits for graph homomorphism polynomials
	1.2 Our findings
	1.3 Related work

	2 Preliminaries
	2.1 Representation of graphs

	3 Matched treedepth
	4 Matched treewidth
	4.1 Matched treewidth of partial 2-trees
	4.2 Finding and counting Subgraphs and induced subgraphs using matched treewidth

	5 Acknowledgement:

